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Gómez-González et al.,
iScience 26, 107598
September 15, 2023 ª 2023
The Author(s).

https://doi.org/10.1016/

j.isci.2023.107598

mailto:cinzia.lavarino@sjd.es
https://doi.org/10.1016/j.isci.2023.107598
https://doi.org/10.1016/j.isci.2023.107598
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2023.107598&domain=pdf


OPEN ACCESS

iScience ll
Article

EpiGe: A machine-learning strategy
for rapid classification of medulloblastoma
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SUMMARY

Molecular classification of medulloblastoma is critical for the treatment of this brain tumor. Array-based
DNA methylation profiling has emerged as a powerful approach for brain tumor classification. However,
this technology is currently not widely available. We present a machine-learning decision support system
(DSS) that enables the classification of the principal molecular groups—WNT, SHH, and non-WNT/non-
SHH—directly from quantitative PCR (qPCR) data. We propose a framework where the developed DSS
appears as a user-friendly web-application—EpiGe-App—that enables automated interpretation of
qPCR methylation data and subsequent molecular group prediction. The basis of our classification strat-
egy is a previously validated six-cytosine signature with subgroup-specific methylation profiles. This
reduced set of markers enabled us to develop a methyl-genotyping assay capable of determining the
methylation status of cytosines using qPCR instruments. This study provides a comprehensive approach
for rapid classification of clinically relevant medulloblastoma groups, using readily accessible equipment
and an easy-to-use web-application.

INTRODUCTION

DNAmethylation–based machine learning algorithms represent an extremely useful diagnostic tool for brain tumor classification. The stabil-

ity and specificity of DNA methylation tumor signatures, together with the high robustness of methylation on the DNA molecule, make

methylation data suitable for the development ofmachine learning–based brain tumor classifiers.1–3 A paradigmatic example is themolecular

classification of medulloblastoma, the most common pediatric malignant brain tumor. Four principal subgroups of medulloblastoma have

been described, which are characterised by distinct epigenetic and genetic profiles, and as well as differing clinical courses.4–18 These groups

are currently represented in the 2021 WHO classification of Central Nervous System tumors as four primary, clinically relevant groups: WNT,

SHH-TP53mutated, SHH-TP53-wildtype, and non-WNT/non-SHH tumors.19 Patients withWNTmedulloblastoma have an excellent prognosis

with current therapy schemes (5-year event-free survival greater than 90%) and are currently considered for controlled reduction of treatment.

The prognosis of SHH-activated medulloblastomas is largely dependent on patient’s age and specific genetic features, where children with

TP53mutated SHH tumors have poorer outcome. Subgroupdriven clinical trials are currently being conducted aimed at the assessment of the

efficacy of SHH pathway inhibitors (e.g., vismodegib) at diagnosis. Patients with non-WNT/non-SHH group have themost unfavourable prog-

nosis, especially when associated with MYC amplification.7,20–22
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Figure 1. Patient flow diagram

CNS, central nervous system; DSS, decision support system; EPIC, Illumina methylation EPIC BeadChip array; HM450K, Illumina Infinium HumanMethylation 450

BeadChip; MB, medulloblastoma; qPCR, quantitative PCR. Images created with BioRender.
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Molecular subgrouping of medulloblastoma tumors has become increasingly important in routine diagnosis, risk stratification and selec-

tion of patients eligible for subgroup-specific treatment. Genome-wide DNAmethylation-based profiling is currently considered a gold stan-

dard for the classification of thesemolecular subgroups of medulloblastoma. However, the application of array-based technology in a routine

diagnostic setting can be time consuming, costly, and sometimes inaccessible for many centers worldwide that treat patients with brain tu-

mors. Consequently, a significant number of patients cannot benefit from the clinical advances associated with methylation-based medullo-

blastoma classification.

We recently developed an epigenetic classifier based on the methylation profile of a six-cytosine signature that allows for classification of

medulloblastoma into the clinically relevant subgroups of WNT, SHH and non-WNT/non-SHH, with an accuracy (of 99% concordance) equiv-

alent to genome-wide DNAmethylation microarray and gene-signature profilingmethods.19,23 The six-cytosine classifier represents a simpli-

fied approach for accurate, rapid, and cost-effective classification of single medulloblastoma DNA samples.

On the basis of our six-cytosine signature, we have now developed a decision support system (DSS) to enable accurate classification of

medulloblastoma tumors into the molecular subgroups WNT, SHH, or non-WNT/non-SHH, using a clinically applicable quantitative PCR

(qPCR)-based approach. We also built an interactive, user-friendly web application that enables the automated interpretation of qPCR

methylation data, defines the methylation status of cytosines, and predicts a molecular subgroup, and reports the methylation class of the

medulloblastoma tumor. The overall design of the proposed workflow is shown in the graphical abstract.

RESULTS

The DSSwas developed usingDNAmethylation data from 4,804 samples, comprising 3,157 primary medulloblastoma tumors, 1,613 non-me-

dulloblastoma tumors, and 37 normal tissues (Figure 1). The purpose of the DSS was to enable the automated analysis and interpretation of

qPCR methylation data to predict the methylation status of the six-cytosine signature. Two main components compose the DSS: an auto-

mated DNA methylation status predictor, and a medulloblastoma molecular subgroup classifier. The DSS was generated using 38 medullo-

blastoma cases (training cohort) with available methyl-genotyping qPCR data and methylation microarray data of the six-cytosine signature.

PCR-based allelic discrimination assay for the analysis of single CpG sites

Sodium bisulfite conversion of genomic DNA involves deamination of unmethylated cytosines to uracil, leaving methylated cytosines un-

changed, enabling the identification ofmethylatedCpG sites (Figure 2B).We tested the capacity of the PCR-based allelic discrimination assay

(rhAmp SNP Genotyping System) to discriminate the methylation status of a single cytosine using bisulfite-converted DNA (BS-DNA). As BS

controls, we selected two cytosines, cg13458561 (methylated) and cg22885965 (unmethylated), that displayed a stable methylation status
2 iScience 26, 107598, September 15, 2023



Figure 2. Development and testing of the methyl-genotyping assays

(A) The decision support system (DSS) was generated using 38medulloblastoma cases (training cohort) with available methyl-genotyping qPCR data (EpiGe) and

methylation microarray data (EPIC, Illumina methylation EPIC BeadChip array) of the six-cytosine signature.

(B) Bisulfite conversion (BS) scheme.

(C) The mean DNAmethylation values of the six-cytosine signature that accurately discriminate themedulloblastoma subgroupsWNT, SHH, and non-WNT/non-

SHH (Gómez et al. 2018).

(D) The quantitative PCR (qPCR) amplification curve representation of bisulfite-converted cytosines for methylated cytosines (with FAM labeling) in red, and

unmethylated cytosines (with VIC labeling), in blue.

ll
OPEN ACCESS

iScience
Article
across microarray methylation data obtained from 4,669 samples of different human tumors and normal tissues (Figure S2). rhAmp SNP gen-

otyping assays for both cytosines (cg13458561 and cg22885965) and their corresponding synthetic controls were designed and tested using

BS converted and non-converted genomic DNA (gDNA) obtained from peripheral blood (PB) samples of six healthy donors (Tables S1 and

S4). Specific amplification was observed for BS-gDNA-PB and the synthetic controls, whereas no amplification was identified in the gDNA-PB

samples, indicating that the BS control primers were specific for BS-DNA. This demonstrated that the hybridization of the rhAmp SNP assays

to their targets was specific, with no significant non-specific signals (Figure S3; Table S5).

Next, we explored the rhAmp SNPGenotyping System for medulloblastoma classification. To this end, we designed and validated rhAmp

SNP methyl-genotyping assays for single CpG site analysis using the six-cytosine signature (cg18849583, cg01268345, cg10333416,

cg12925355, cg25542041, cg02227036) with medulloblastoma subgroup-specific differential methylation, which allows for accurate classifica-

tion of medulloblastoma into the clinically relevant subgroups of WNT, SHH, and non-WNT/non-SHH23 (Figure 2C). This six-cytosine signa-

ture was previously developed and validated by our group using DNAmethylation data from 1,576 samples, includingmedulloblastoma, pe-

diatric brain tumors, and normal tissue23 (Figure 2C). The six cytosines of the signature are characterized by a bimodal subgroup-specific

methylation profile, with a clear methylated or unmethylated status, which enables the analysis by single-nucleotide variant detection

methods. The designed genotyping assays to discriminate between single-basepair changes represent opposedmethylation states, cytosine

(methylated) and thymine (unmethylated) (Figure S4).

A total of 26 EpiGe assays were tested by qPCR using synthetic double-strandedDNA sequences that recapitulated both bimodal methyl-

ation states. Regions enriched with CG dinucleotides were avoided for primer design, since conversion of cytosines to thymines after bisulfite

treatment could interfere with annealing efficiency. Six EpiGe assays were selected for the robust and reproducible capacity to identify and

distinguish between methylated (cytosine) and non-methylated (thymine) states of the cytosines (Table S5). The allelic discrimination plots

corresponding to the EpiGe assays and synthetic controls for each of the six cytosines showed compact, non-overlapping, and well-differen-

tiated clusters: methylated synthetic DNA, unmethylated synthetic DNA, and non-template controls (NTC) (Figure S5). These clusters
iScience 26, 107598, September 15, 2023 3
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presented large separation angles between synthetic methylated and unmethylated DNA control clusters24 (Figure S4B), and both synthetic

control clusters clearly separated from the NTC cluster coordinates: the methylated control/NTC FAM signal ratio had a mean of 8.43 (range

8.00–8.72), and the unmethylated control/NTC VIC signal ratio had a mean of 5.08 (range 4.79–5.48) (Table S5).
Detection and discrimination of DNA methylation of medulloblastoma samples using EpiGe assays

To explored the performance of themethyl-genotyping assay using tumorDNAas the startingmaterial, we usedDNAobtained from38 fresh-

frozen medulloblastoma biopsies (training cohort), previously classified employing the InfiniumMethylationEPIC BeadChip array data (EPIC)

and the Molecular Neuropathology Platform brain tumor classifier2 (https://www.molecularneuropathology.org/mnp) (Table S1; GEO ID:

GSE210723). The methylation EPIC microarray data of well-characterized CNS tumors and normal pediatric tissues (210 medulloblastoma,

63 aypical teratoid rhabdoid tumor [ATRT], 37 embryonal tumor with multi-layered rosettes [ETMR], 30 ependymoma [EPN], and 6 normal

cerebellum samples) were used for comparative and quality control analyses (Figure S6; Table S4).

Methylation levels of the six-cytosine signature were isolated from the DNA methylation data and used to classify the training cohort ac-

cording to our previously described classificationmethod23 (Table S6). All samples could be assigned to a subgroup with an excellent degree

of concordance (100% agreement; 95% CI [90.7%–100%]) with array-based DNA methylation profiling classification.

The DNA of the training cohort was BS-converted and analyzed using the genotyping primers (Figure S4A). The allelic discrimination plots

of normalized fluorescence intensity of FAM and VIC at the Y- and X axis, respectively, showed four distinct clusters: methylated, unmethy-

lated, hemimethylated, and NTC samples (Figure S4B). By manual calling, 92.98% (212/228) of the analyzed cytosines were assigned to a

methylation state (Table S7). The qPCR methylation predictions enabled us to successfully classify 32 medulloblastoma samples (84.21%)

with a 100% concordance with DNAmethylation profiling classification (95% CI [89.11%–100%], Kappa Cohen (k) = 1). Samples were not clas-

sified if more than one cytosine of the panel was assigned to a hemimethylated methylation state (Table S7).
DNA methylation status predictor

We computed the normalized fluorescence qPCR endpoint values (DRn) mean and standard deviation25 values between qPCR replicates, and

observed low SD values between replicates (Figures 3A; S7). All cytosines presented a strong DRn correlation (R2 of 0.98 and 0.95 for DRn

Allele1 and 2, respectively, and p value < 0.01) (Figure 3A). Only 5 cytosines, corresponding to 5 different samples, presented SD > 0.5 in

both alleles (Figure S7). The qPCR Allele1 and Allele2 DRn mean values in base 10 logarithmic (log10) scale were used as independent values

for training the logistic regressionmodel (LRM). As a dependent variable, we used the binarized referencemethylationmicroarray values (Fig-

ure 3B). The LRMwas validated using LOPOCV, for which themethylation status of each single cytosine was predicted individually, but the set

of six-cytosines were computed together to avoid biases or overfitted results. The LRM showed a significant cytosine methylation prediction

capacity with an AUC of 0.98 (95% CI [0.96–0.99]). Based on the Youden’s Index of 0.88 (95% CI [0.81–0.94]), sensitivity at 94% (95% CI [87.5%–

97.3%]), and specificity at 93.8% (95% CI [87.1%–97.2%]), an optimal threshold value of 0.456 for the logistic regression output was obtained

(Figure 3C). The performance metrics presented an excellent degree of accuracy (93.9%; 95% CI [89.9%–96.6%], k = 0.88 (95% CI [0.81–0.94]))

(Tables S8 and S9).
Medulloblastoma subgroup classifier

To develop the subgroup classifier, we binarized and encoded the DNAmethylation microarray data from 3,044 medulloblastoma and 1,644

non-medulloblastoma samples according to a fixed order of the cytosines: cg18849583, cg01268345, cg10333416, cg12925355, cg25542041,

and cg02227036 (Figures 1 and S8). For the medulloblastoma tumors, we identified three primary binary codes that represented more than

96% of the cohort: 100101 (77.2%), 011001 (14.7%), and 010110 (4.4%). These codes were found to be subgroup-specific; 100101 categorised

97.1% of non-WNT/non-SHH; 011001, 94.7% of SHH; and 010110, 88.8% of WNT medulloblastomas. The binary codes 100101, 011001, and

010110 were defined as reference binary codes (RefBC) (Figures 3D and 3E; S8; Tables S10 and S11).

We investigated the training cohort based on themethylation status predicted by the LRM (binary code) in order to compute theminimum

distance to the three RefBC using the Hamming distance (HD) (Figure S9A). The HD ranged from a 0, indicating that the two codes were iden-

tical, to 6, indicating that all the positions were different between the two codes. Samples were assigned to a subgroup if they had the min-

imum HD, but they were excluded if they had the same minimum HD for multiple RefBCs. Our training cohort was assigned to the nearest

subgroup using HD with an excellent degree of accuracy (94.7%, 95% CI [82.3%–99.4%]; k = 0.87, 95% CI [0.71–1]), according to previously

reported medulloblastoma classification data (Figures 3F; S6; Tables S9 and 12). By applying the HD score and the assignation criteria

(HD score system) to the 64 possible combinations of the binary code, we obtained a total of 33 classifiable binary codes, none with an

HD score of <0.67, whereby 1 = perfect match, 0.83 = high match, and 0.67 = low match (Figure 3G). After applying the HD score system

to the training cohort, 36 of the 38medulloblastoma samples (94.74%) were assigned to amolecular subgroupwith 100% accuracy, according

to previous reported classification subgrouping (95% CI [90.3%–100%], k = 1 95% CI [1-1]). Of these, all but one had an HD score >0.83 (Fig-

ure S10; Tables S9 and S12). The remaining two cases with low scores (0.67) could not be classified given that the minimum HD score was the

same between two RefBCs (Table S12). An independent validation of the HD score system was performed using previously published DNA

methylation microarray data from 3,044 medulloblastoma samples (2,834 from HM450K, and 210 from EPIC). Overall, 99.5% of the medullo-

blastoma samples presented classifiable binary codes and were classified with 99.8% accuracy (95% CI [99.6%–100%]; k = 1 (95% CI [0.9–1]))

(Table S13).
4 iScience 26, 107598, September 15, 2023
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Figure 3. DNA methylation status predictor

(A) Allele 1 and 2DRn correlation between replicates. Pearson correlation coefficient (R2) is 0.98 and 0.95 forDRnAllele 1 and 2, respectively; p value <0.01 for both

correlations.

(B) Left, Allele 1 DRn mean value database in a base 10 logarithmic scale. Right, the Allele 2 DRn mean value database in a base 10 logarithmic scale.

(C) Receiver operating characteristic (ROC) curve of the logistic regression method (LRM). TPR, true positive rate; FPR, false positive rate.

(D) Donut pie of previously published genome-wide DNA methylation array data of medulloblastoma (MB) tumors (n = 3,044) The outer pie represents the

distribution of the binarized methylation status.

(E) Donut pie of non-MB tumors analyzed by genome-wide DNA methylation array data of (n = 1,644).

(F). HD score radar plots of three prototypical binary codes, of perfectmatch (HD= 1) with nomismatches, 1mismatch (HD= 0.83), or 2mismatches (themaximum

number accepted) (HD = 0.67).

(G) Confusion matrix of the Hamming distance (HD) prediction of the training cohort analyzed by EpiGe. All sample replicates were assigned to the nearest MB

subgroup reference binary code (94.74% [95% CI, 82.25%–99.36%]; k = 0.87).

ll
OPEN ACCESS

iScience
Article
EpiGe web application

The entire DSS was encapsulated in an easy-to-use web application, named EpiGe-App (https://www.epige.irsjd.org/), for automatic classi-

fication of medulloblastoma tumors using the six-cytosine methylation signature. We tested an independent set of qPCR data from 20 me-

dulloblastoma samples, including 1 WNT, 2 SHH, and 17 non-WNT/non-SHH medulloblastoma tumors from pediatric patients (henceforth,

validation cohort), all of which had been previously classified by microarray DNA profiling16,17,23,26 (Table S1). qPCR data of the validation

cohort was directly uploaded to the EpiGe-App. A total of 19 of the 20 (95%) binary codes obtained from the samples were classified with

a 100% agreement (95% CI [82.4%–100%]; k = 1, 95% CI [1–1]) with the previously reported medulloblastoma molecular subgrouping data

(Figures S9B and S11; Tables S9 and S14).

The EpiGe-App incorporates the analysis of the raw qPCR data into the result, which is delivered to the user as an easy-to-understand

report. No programming knowledge is required for the use of the EpiGe-App. Supplementary material is provided on the EpiGe-App to

guide the user through the entire procedure, from protocols that outline the basic principles of the qPCR experiment to how to upload

data onto the web application. Information uploaded by the user to the platform is automatically anonymized and stored in the database

for a period of 30 days, after which it is erased. Currently, EpiGe-App can analyze data generated by the following qPCR systems: Applied

Biosystem 7500 Fast Real-time PCR System and the QuantStudio 3, QuantStudio 5, and QuantStudio 6 Flex System instruments. Users can

access EpiGe-App throughmost web browsers, includingGoogle Chrome,Mozilla Firefox, Apple Safari, andMicrosoft Edge. Themean turn-

around time for an analysis is 10.95G 0.65 s, if the task queue is empty. Afterward, the user has access to the analysis results and can download

the report in a pdf format (Supplementary Appendix: EpiGe-App report). To use the application, the usermust first read and accept the terms
iScience 26, 107598, September 15, 2023 5
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and conditions agreement of use drafted by the legal team of the Hospital Sant Joan de Déu. EpiGe-App is a research tool that is intended

only for scientific purposes: the EpiGe-App has not been validated clinically and was not designed to be used for diagnostic purpose nor to

replace the services of a licensed, trained physician or health professional or to be a substitute for medical advice.

DISCUSSION

In this study, we developed, tested, and validated amachine-learningDSS that enables classification ofmedulloblastoma tumors directly from

qPCR-basedDNAmethylation data.Ourmachine-learningDSS showed accurate performance (96%accuracy) for differentiating the principal,

clinically relevant molecular subgroups of WNT, SHH, and non-WNT/non-SHH of medulloblastoma. Specifically, the performance of our

model was similar to previously reported microarray-based molecular classification studies.6,16 Molecular classification of medulloblastoma

is critical for the correct treatment of patients with this malignant pediatric brain tumor. Array-based genome-wide DNAmethylation profiling

has proven to be a powerful analytical tool and is currently considered a gold standard for the molecular classification of medulloblastoma.

However, using this genomic technology in routine clinical practice can be time-consuming, costly, and/or inaccessible for many centers

around the world that treat patients with central nervous system tumors.

Our previous study showed that the clinically relevant molecular subgroups of medulloblastoma can be accurately classified using a

reduced set of six cytosines with distinctive, subgroup-specific methylation profiles.23 Our epigenetic classifier classified the WNT, SHH,

and non-WNT/non-SHH subgroups with an accuracy (99% concordance) equivalent to DNA methylation microarray profiling.23 In this study,

we developed and trained a multistep DSS based on the methylation profiles of our panel of six CpGmarkers analyzed by qPCR. To increase

the applicability, we developed an interactive, user-friendly web application—EpiGe-App—that has the potential for automated interpreta-

tion of qPCR methylation data and subsequent molecular subgroup prediction, and for reporting the methylation class of the medulloblas-

toma tumor. By using automated analysis of qPCR data, our classification approach should not only be easier to use but also reduce analyser

variability and interpretative errors between users, thus improving efficiency of the algorithm.

Our classificationmethod has several strengths. It is a qPCR-based, methyl-genotyping approach, which is overall more accessible and cost-

effective than array-based profiling. To our knowledge, our study is the first to perform methylation-based classification of medulloblastoma

using qPCR. Our approach is based on the analysis of the methylation status of a reduced panel of six-cytosine, providing a simple and low

labour-dependent approach for accurate and rapid classification ofmedulloblastoma. Recent studies have demonstrated the feasibility of using

small sets of tumour-defining epigenetic alterations as a tool for the molecular classification of gliomas and brain metastases.27,28 Similar to our

work, these studies also used PCR-based approaches, methylation-specific qPCR, or methylation-sensitive high-resolution.27,28 In contrast to

these, our approach enables the methylation status of single CpGs to be determined after bisulfite conversion without requiring pre-configu-

ration or generation of serial dilutions of universal methylated control standard curves. No further calculations or acquisition of specialized soft-

ware is needed, making it easy to use in a clinical setting. Moreover, our quantitativemethyl-genotypingmethod performed consistently across

different PCR platforms, suggesting that the proposed approach can be implemented using existing PCR instrumentation found in a vast ma-

jority of centers worldwide. Additionally, the web application EpiGe-App provides a simple, free-cost approach for automated interpretation of

qPCR methylation data and subsequent molecular subgroup prediction, and reporting of the methylation class of a medulloblastoma tumor.

Our approach has also several limitations. First, ourmachine-learningmodel is a classification tool that has been developed and optimized

exclusively for qPCR methylation values obtained from tumors with histopathological diagnosis of medulloblastoma. Unlike array-based,

genome-wide DNA methylation profiling tools, our qPCR approach, which is based on the methylation profile of only six cytosines, does

not support a diagnostic analysis of medulloblastoma or other brain tumor entities. qPCR data generated from non-medulloblastoma sam-

ples that are submitted to the EpiGe-App will be detected by the DSS only as ‘‘non-matching’’ with any of the medulloblastoma subgroup–

specific methylation profiles. Second, our approach does not distinguish between group 3 and group 4 tumors. The WHO Classification of

Tumors of the Central Nervous System, fifth edition, includes four principal molecular groups: WNT-activated, SHH-activated divided on the

basis of TP53 status (mutated or wildtype tumors), and the non-WNT/non-SHH, including both group 3 and group 4medulloblastomas.19 Our

method thus needs to be implemented alongside with p53 immunohistochemistry assays and/or TP53 sequencing strategies. Third, although

the analysis can use fresh, frozen, or FFPE embedded samples, the usefulness of FFPEmaterial is often limited by the quality of the FFPE tissue

and resulting DNA. This can hamper the use of the analysis in centers that only have access to FFPE samples. Fourth, the sample size of our

validation cohort was small. As with all machine learningmethods, our approach relies on the data available for training and validation. A large

cohort study is needed to support the value of this classifier. Future work will include prospective validation with further samples of medul-

loblastoma tumors. Despite these limitations, the EpiGe-App classifier has the potential to assist classification ofmedulloblastoma, especially

in centers with limited access to genome technologies for methylation and transcriptome profiling.

In conclusion, this study provides a comprehensive approach for rapid classification of clinically relevant medulloblastoma entities, using

readily accessible equipment, even in poorly equipped laboratories, and an easy-to-use, free-cost web application. The proposed strategy

will be broadly applicable to medulloblastoma research and has shown potential to support clinical application. Prospective validation in

large, representative cohort of tumors will be crucial to support the potential clinical application. Finally, a similar classification strategy

may prove to be useful also in the context of other pediatric tumors.

Limitations of the study

Our approach has also several limitations. First, our machine-learning model is a classification tool that has been developed and optimized

exclusively for qPCR methylation values obtained from tumors with histopathological diagnosis of medulloblastoma. Unlike array-based,
6 iScience 26, 107598, September 15, 2023
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genome-wide DNAmethylation profiling tools, our qPCR approach, which is based on the methylation profile of only six cytosines, does not

support a diagnostic analysis of medulloblastoma or other brain tumor entities. qPCR data generated from non-medulloblastoma samples

that are submitted to the EpiGe-Appwill be detected by theDSS only as ‘‘non-matching’’ with any of themedulloblastoma subgroup–specific

methylation profiles. Second, our approach does not distinguish between group 3 and group 4 tumors. TheWHOClassification of Tumors of

the Central Nervous System, fifth edition, includes four principal molecular groups: WNT-activated, SHH-activated divided on the basis of

TP53 status (mutated or wildtype tumors), and the non-WNT/non-SHH, including both group 3 and group 4medulloblastomas.19Ourmethod

thus needs to be implemented alongside p53 immunohistochemistry assays and/or TP53 sequencing strategies. Third, although the analysis

can use fresh, frozen, or FFPE embedded samples, the usefulness of FFPE material is often limited by the quality of the FFPE tissue and re-

sultingDNA. This can hamper the use of the analysis in centers that only have access to FFPE samples. Fourth, the sample size of our validation

cohort was small. As with all machine learning methods, our approach relies on the data available for training and validation. A large cohort

study is needed to support the value of this classifier. Future work will include prospective validation with further samples of medulloblastoma

tumors. Despite these limitations, the EpiGe-App classifier has the potential to assist classification of medulloblastoma, especially in centers

with limited access to genome technologies for methylation and transcriptome profiling.
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Clinical Setting Permits Sub-Classification and

Reveals New Outcome Predictions

GSE142627

Raw data Metabolic Regulation of the Epigenome Drives

Lethal Infantile Ependymoma

GSE146426

Raw data Epigenetic methylation chip analysis of

childhood medulloblastoma patient samples

GSE156012

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Raw data Atypical teratoid/rhabdoid tumors (ATRTs)

with SMARCA4 mutation are molecularly

distinct from SMARCB1 deficient cases

GSE161692

Raw data Validation of the MethylationEPIC BeadChip

for fresh-frozen and formalin-fixed

paraffin-embedded tumours

GSE92580

Raw data Clinical and genetic diversity and recurrent

CXorf67 mutations across distinct molecular

subgroups of posterior fossa type A

(PFA) ependymoma

GSE104210

Raw data Proteogenomic landscape of

medulloblastoma subgroups

GSE104728

Raw data DNA methylation-based classification of

human central nervous system tumors

GSE109381

Raw data The Molecular Landscape of ETMR at

Diagnosis and Relapse

GSE122038

Raw data HM450K-based DNA methylation analysis of

normal brain and glioma samples

GSE123678

Raw data Second-generation molecular subgrouping of

medulloblastoma: an international

meta-analysis of Group 3 and Group

4 subtypes

GSE130051

Raw data DNA methylation data from 153 ATRT

tumor samples

GSE141039

Raw data Recurrent Variations in DNA Methylation in

Human Pluripotent Stem Cells and their

Differentiated Derivatives

GSE30654

Raw data Epigenomic Alterations Define Lethal

CIMP-positive Ependymomas of Infancy

GSE45353

Raw data Illumina Infinium 450K array data for Diffuse

Intrinsic Pontine Glioma

GSE50022

Raw data DNA methylation changes at CpG and

non-CpG sites are associated with

development and clinical behavior

in neuroblastoma

GSE54719

Raw data Microarray-based DNA methylation profiling

of medulloblastoma and normal cerebellum

samples

GSE54880

Raw data The genomic and epigenomic landscape of

atypical teratoid rhabdoid tumors

GSE70460

Raw data DNA methylation profiling of primary

medulloblastoma samples

GSE85212

Raw data A biobank of 30 molecularly characterized

patient-derived xeongraft models of pediatric

brain tumors

GSE99994

Software and algorithms

QuantStudio� Design & Analysis Software Thermo Fisher Scientific https://www.thermofisher.com/es/es/home/

global/forms/life-science/quantstudio-3-5-

software.html

R Version 4.3.0 R Foundation https://cran.r-project.org/

(Continued on next page)

ll
OPEN ACCESS

iScience 26, 107598, September 15, 2023 11

iScience
Article

https://www.thermofisher.com/es/es/home/global/forms/life-science/quantstudio-3-5-software.html
https://www.thermofisher.com/es/es/home/global/forms/life-science/quantstudio-3-5-software.html
https://www.thermofisher.com/es/es/home/global/forms/life-science/quantstudio-3-5-software.html
https://cran.r-project.org/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Python Version 3.9 Python Software Foundation https://www.python.org

minfi Bioconductor software https://bioconductor.org/packages/

release/bioc/html/minfi.html

stats Rcore statistical functions https://rdocumentation.org/packages/

stats/versions/3.6.2

stringdist CRAN package https://cran.r-project.org/web/packages/

stringdist/index.html

vcd CRAN package https://cran.r-project.org/web/packages/

vcd/index.html

pROC CRAN package https://cran.r-project.org/web/packages/

pROC/index.html

ThresholdROC CRAN package https://cran.r-project.org/web/packages/

ThresholdROC/index.html

Django Python package https://www.djangoproject.com

Celery Version 5.1.2 Python package https://docs.celeryq.dev/en/v5.1.2/

changelog.html

PostgreSQL Framework for front-end web development https://www.postgresql.org

Bootstrap Open source object-relational

database system

https://getbootstrap.com

cloudUPC Private cloud from the Universitat

Politècnica de Catalunya (UPC)

https://serveistic.upc.edu/ca/cloud-upc

Other

EpiGe-APP This paper https://www.epige.irsjd.org/
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Soledad Gómez-

González (soledad.gomezg@sjd.es).

Materials availability

rhAmp SNP assays were designed, optimized, and synthesizedwith IDT technical support. Primer sequences are available at Table S5 and the

reference numbers are listed in the key resources table.

Data and code availability

d DNAmethylationmicroarray data have been deposited atGEOand are publicly available as of the date of publication. Accession number is

listed in the key resources table.

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

The data used to develop our decision-support system consisted of DNA methylation data from 4,807 samples, comprising 3,157 primary

medulloblastomas, 1,613 non-medulloblastoma tumours, and 37 normal tissues. The dataset included DNA methylation microarray data

from 4,743 samples obtained from databases that are publicly available or generated by our research group, together with methylation

data from DNA of medulloblastoma biopsies (53 fresh-frozen and 5 fixed formalin paraffin embedded [FFPE]) and of six normal peripheral

blood samples generated using a PCR-based methyl-genotyping approach (Table S1). Tumour biopsies were obtained from primary medul-

loblastoma tumours diagnosed and treated at Hospital Sant Joan de Déu (HSJD), Barcelona and at collaborative centres. All samples

included in the study were obtained from patients 18 years old or younger. Clinical data and molecular subgroup affiliation of medulloblas-

toma samples were available for all the cases. Sample flow diagram is detailed in Figure 1.

The study was approved by the Institutional Research Ethics Committee of the HSJD (CEIC PIC-116-19). Written informed consent was

obtained from patients/guardians before sample collection.
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METHOD DETAILS

Genomic DNA extraction and bisulfite conversion

Genomic DNA was isolated using Gentra Pure gene Tissue kit for fresh-frozen samples or a QIAampDNA FFPE kit for FFPE samples (Qiagen

Technologies). Bisulfite conversion of genomic DNA was performed using EpiTect Plus Bisulfite Conversion kit (Qiagen Technologies),

following the manufacturer’s protocol.

Bisulfite conversion optimization: The bisulfite conversion reaction was optimised using 5ml at a concentration of 100ng/mL DNA to obtain

500ng of total DNA in a high-concentration range (1ng-2mL) after testing the low-concentration protocol (1-500ng). The bisulfite reaction was

composed of 5ml of sample DNA volume (100ng/ml), 15mL of RNase-free water, 85mL of BisulfiteMix, 35mL DNA Protect Buffer. The quality and

concentration of the bisulfite converted DNA improved when we eluted the bisulfite converted DNA in 30mL of Endonuclease-free EB buffer.
Sequencing

The presence and correct position ofmethylation-dependent single-nucleotide variant C/T SNPs in the synthetic DNA sequences was verified

by targeted Sanger sequencing. Briefly, sequencing analyses (DNA and bisulfite sanger sequencing) were performed using BigDye� Termi-

nator Cycle Sequencing kit (Applied Biosystems) on an ABI Prism 3130XL sequencer (Applied Biosystems), following standard procedures.23
Quantitative PCR-genotyping analysis

Genotyping analysis was performed using the rhAmp� SNP technology (Integrated DNA Technologies, USA (IDT)) according to manufac-

turer’s instructions. Briefly, rhAmp genotyping assay was setup using 1 ml of bisulfite-converted genomic DNA with rhAmp Genotyping

Mix, composed of rhAmp Genotyping Master Mix (IDT), rhAmp Reporter Mix with a reference dye (IDT), and custom rhAmp SNP assays

(IDT). The rhAMP SNP assays contain an allele-specific primer 1 (methylated allele), an allele-specific primer 2 (unmethylated allele),

and the locus-specific reverse primer. Allelic specificity of the rhAMP SNP assays was provided by two target-specific fluorescent probes,

whereby the methylated allele probe was labelled with FAM dye and the unmethylated allele probe, with Yakima Yellow dye; both were de-

tected using the VIC channel. Normalization across samples was performed using the ROX Passive Reference dye. A total of 10 ng synthetic

control sequencewas used for each qPCR assay. EpiGe primers were used at a 203 concentration, following themanufacture’s protocol. Each

experiment was run in duplicate to validate the reproducibility, including two non-template controls (NTC). Samples were analysed using a

7500 Real-Time PCR System (Thermo Fisher Scientific) or a QuantStudio� Flex Real-Time PCR System, version 3, 5, or 6 (Thermo Fisher Sci-

entific). Based on the thermal cycling parameters for rhAmp SNP genotyping specified in the IDT protocol, we tested different times for the

extension step ranging from 20 to 45 seconds, the latter being the extension time with best performance. The optimized thermal cycle pro-

gram is shown in Table S3. qPCR results (sample setup, raw data, amplification data, multicomponent data, results, and reagent information)

were exported in a single text file (*.txt format) from the real-time PCR system.
Synthetic controls

Double-stranded, sequence-verified gBlocks�Gene Fragments (IDT) of 300 to 500 base pairs were designed and used as positive or negative

control sequences. Two gBlocks were designed specifically for each cytosine of interest, one for each possible methylation state: methylated

or unmethylated. The total DNA input for gBlock control sequences in all experiments was 10 ng. Synthetic controls were tested using a 1:10

dilution series (from 10 ng to 0.01 ng) (Figure S1).
Binarization

The DNA methylation status of each cytosine was binarizated into binary numbers, applying a cut-off of 0.5. Cytosines whose methylation

ranged from 50% to 100% were assigned a 1 (methylated), and cytosines whose methylation was <50% were assigned a 0 (unmethylated).
Encoding

The encoding is a six-digit representation of the two possible values (1 or 0) obtained from the binarization of the six cytosines (binary code)

according to a fixed order: cg18849583, cg01268345, cg10333416, cg12925355, cg25542041, and cg02227036.
DNA methylation data processing

DNA methylation microarray (Illumina Infinium HumanMethylation 450 BeadChip (HM450K) and Illumina methylation EPIC BeadChip array

(EPIC)) RAW data (two colour iDAT files) were normalized using SWAN from minfi package available through Bioconductor.29 In order to

exclude technical biases, we used an optimized pipeline with stringent selection filters: probes detecting SNPs, probes with poor detection

P-values (P>0.01) and those with sex-specific DNA methylation were removed from the initial dataset.23 Single cytosine methylation values

(b-values) were calculated as the ratio of the methylated signal intensity to the sum of methylated and unmethylated signals (Table S2;

Figure 1).
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DNA methylation status prediction

The DNAmethylation predictor was developed to enable automated interpretation of qPCR data and prediction of the methylation status of

cytosines. Normalised fluorescence qPCR endpoint values (DRn) were used as a data source for prediction of DNAmethylation status. Meth-

ylated Allele1 DRn (FAM) and Unmethylated Allele2 DRn30 values were obtained from a text file directly from the qPCR thermocycler.

First, we computed the DRnmean and standard deviation (SD)25 values between qPCR replicates. The qPCR DRnmean values were trans-

formed into a base 10 logarithmic (log10) scale. To train the logistic regressionmodel (glm function fromR v4.2.0),31 the independent variables

used were log10-transformed qPCR DRn mean values from Allele1 and Allele2, and the dependent variable used was the DNA methylation

microarray data (EPIC data) of the six-cytosine signature that had been binarized (whereby 1 indicates methylated, and 0, unmethylated)

applying a cut-off of 0.5. The performance of themodel was assessed using the leave-one-out cross-validation (LOOCV)method of cytosines,

grouped by sample (leave-one-patient-out cross-validation [LOPOCV]) to avoid having a potential biased performance induced by cytosines

of the same patient assigned to both training and test sets.31 N-folds were performed, with N equal to the number of patients.
Medulloblastoma subgroup classifier

To define the Hamming distance (HD) reference codes, we binarized the six-cytosine microarray methylation data obtained from 3,044 me-

dulloblastoma and 1,644 non-medulloblastoma samples (Table S1). The binarized methylation data was encoded according to a fixed order

of the cytosines (cg18849583, cg01268345, cg10333416, cg12925355, cg25542041, and cg02227036). Medulloblastoma subgroup data was

represented by a specific, unique binary code: WNT (010110), SHH (011001), and non-WNT/non-SHH (100101) (termed reference binary

code, RefBC).

To develop the classifier, we computed the minimum HD32 between the binary encoding that described the methylation status of the six-

cytosine signature (binary code) and the RefBC. The binary codes (obtained from the DNAmethylation status prediction) and the RefBC were

compared using HD. Samples were assigned to a subgroup by including those with the minimum HD, but excluding those with equal min-

imum HD to multiple RefBC. The HD was calculated using the stringdist function (stringdist R package v0.9.8). The HD distance to the three

RefBC ranged from 0 (when the two codes were identical) to 6 (when the two codes differed at each position).

We generated a scoring system for an input sample i, based on the distance range to the three RefBCs by applying the following formula:

Sir = 1 � dir

dmax
, wheredir is the distance of i to the reference r, anddmax is themaximumpossible distance. The obtainedHD score ranged from

0, maximum distance, to 1, when the binary code was identical to the RefBC. We computed the HD score of the training cohort to the three

RefBC.
QUANTIFICATION AND STATISTICAL ANALYSIS

The diagnostic ability of our method was assessed by computing sensitivity and specificity. We also computed other metrics to evaluate the

agreement between our method and the gold standard: the accuracy (percentage of samples correctly classified) and Cohen’s kappa coef-

ficient (k).33 The accuracy = TN+TP
TN+TP+FN+FP (true positive [TP], false positive [FP], true negative [TN],34 and false negative [FN]), and the 95% con-

fidence intervals (CI) were computed using the confusionMatrix function (caret R package v6.0). The Cohen’s kappa coefficient and the 95%CI

were computed using kappa function (vcd R package v1.4-10).

The area under the receiver operating characteristic (ROC) curve35 and its 95%CI were calculated using the roc function (pROC R package

v1.18.0). The optimal threshold for the logistic regression output was obtained computing Youden’s index (J),36,37 J = sensitivity + specificity

-1. Youden’s index, sensitivity, and specificity, and the respective 95%CI were computed using thediagnostic function (ThresholdROCRpack-

age v2.9.0).
ADDITIONAL RESOURCES

The entiremethodology developed was encapsulated in a web application named EpiGe-App: https://www.epige.irsjd.org/. This web server

was developed in the Django (https://www.djangoproject.com) framework based on Python3.9 (https://www.python.org) that provides pro-

gramming resources for the development of server web services and data management. EpiGe-App uses Celery as a task distributor (v5.1.2)

to analyse samples as asynchronous tasks and used PostgreSQL (https://www.postgresql.org) as a database to store the information of each

sample analysis performed. The database is anonymized, each sample has an internal code for traceability of the analysis. No personal infor-

mation, such as email address or registration, are required to use the web server. The client-side has been designed with HTML5 styled with

Bootstrap (https://getbootstrap.com). Users can communicate with the web server through an HTTPS protocol implemented in aNginx HTTP

server. Finally, the web server is hosted on a dedicated virtual machine in the private cloud from theUniversitat Politècnica deCatalunya (UPC)

(cloudUPC, https://serveistic.upc.edu/ca/cloud-upc). The hardware specifications are two virtual CPUs, with two processing cores each of vir-

tual CPUs at 2.2GHz, 4GB of RAM memory, and a data storage capacity of 35GB. The virtual machine uses a Linux operating system

(Ubuntu OS).
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