369 research outputs found

    Prevalence and correlates of metabolic syndrome in Hong Kong Chinese adults—a random community sample study

    Get PDF
    The study investigates the prevalence and correlates of metabolic syndrome (MS) among Hong Kong Chinese adults. Random cluster sampling design and International Diabetes Federation (IDF) MS criteria were adopted. Totally 737 adults participated in questionnaire survey and received waist circumference (WC) measurement. Among them 335 showed central obesity (WC > 80 and 85 cm for women and men respectively). Subsequently 229 accepted blood test. Totally 71 participants met MS criteria, suggesting an overall prevalence of 14.1%. Both central obesity and MS increase sharply with age. Chi-square/ANOVA analyses revealed significant positive associations between central obesity with: being male, marital status being married/cohabit, lower education level, occupation as manager or housewife, and alcohol consumption. For MS, the significant positive correlates were: lower education level, occupation as service workers or housewife, lower income level, and alcohol consumption. After controlling for age, binary logistic regression analyses suggested the significant risk factors for central obesity were being male (OR=1.4), married/cohabit (OR=1.8), longer working hours (OR=1.5), eating less vegetables (OR=1.5), and alcohol consumption (OR=1.8). For MS, after controlling for age, only alcohol consumption appeared to be significant risk factor (OR=2.3). The mMultivariate binary logistic regressions also supported that age group and alcohol consumption were significant predictors of MS. The past study applying IDF MS criteria in Hong Kong adults revealed a prevalence of 7.4% only. Adopting a convenience sample of active working adults may largely explain the underestimation in previous study. To conclude, adopting randomized cluster sampling and IDF criteria, the study revealed aA prevalence rate of MS at 14.1% revealed in the current study seems to be a better estimate since the randomized cluster sampling method was adopted. Alcohol consumption appears to be the strongest risk factor of MS, which however needs further investigation

    Identification and Behavioral Evaluation of Sex Pheromone Components of the Chinese Pine Caterpillar Moth, Dendrolimus tabulaeformis

    Get PDF
    Background: The Chinese pine caterpillar moth, Dendrolimus tabulaeformis Tsai and Liu (Lepidoptera: Lasiocampidae) is the most important defoliator of coniferous trees in northern China. Outbreaks occur over enormous areas and often lead to the death of forests during 2–3 successive years of defoliation. The sex pheromone of D. tabulaeformis was investigated to define its chemistry and behavioral activity. Methodology/Principal Findings: Sex pheromone was collected from calling female D. tabulaeformis by headspace solid phase microextraction (SPME) and by solvent extraction of pheromone glands. Extracts were analyzed by coupled gas chromatography/mass spectrometry (GC-MS) and coupled GC-electroantennographic detection (GC-EAD), using antennae from male moths. Five components from the extracts elicited antennal responses. These compounds were identified by a combination of retention indices, electron impact mass spectral matches, and derivatization as (Z)-5-dodecenyl acetate (Z5-12:OAc), (Z)-5-dodecenyl alcohol (Z5-12:OH), (5Z,7E)-5,7-dodecadien-1-yl acetate (Z5,E7-12:OAc), (5Z,7E)-5,7-dodecadien-1-yl propionate (Z5,E7-12:OPr), and (5Z,7E)-5,7-dodecadien-1-ol (Z5,E7-12:OH). Behavioral assays showed that male D. tabulaeformis strongly discriminated against incomplete and aberrant blend ratios. The correct ratio of Z5,E7-12:OAc, Z5,E7-12:OH, and Z5,E7-12:OPr was essential for optimal upwind flight and source contact. The two monoenes, Z5-12:OAc and Z5-12:OH, alone or binary mixtures, had no effect on behavioral responses when added to the optimal threecomponen

    Janus monolayers of transition metal dichalcogenides.

    Get PDF
    Structural symmetry-breaking plays a crucial role in determining the electronic band structures of two-dimensional materials. Tremendous efforts have been devoted to breaking the in-plane symmetry of graphene with electric fields on AB-stacked bilayers or stacked van der Waals heterostructures. In contrast, transition metal dichalcogenide monolayers are semiconductors with intrinsic in-plane asymmetry, leading to direct electronic bandgaps, distinctive optical properties and great potential in optoelectronics. Apart from their in-plane inversion asymmetry, an additional degree of freedom allowing spin manipulation can be induced by breaking the out-of-plane mirror symmetry with external electric fields or, as theoretically proposed, with an asymmetric out-of-plane structural configuration. Here, we report a synthetic strategy to grow Janus monolayers of transition metal dichalcogenides breaking the out-of-plane structural symmetry. In particular, based on a MoS2 monolayer, we fully replace the top-layer S with Se atoms. We confirm the Janus structure of MoSSe directly by means of scanning transmission electron microscopy and energy-dependent X-ray photoelectron spectroscopy, and prove the existence of vertical dipoles by second harmonic generation and piezoresponse force microscopy measurements

    Overexpression of Nrdp1 in the Heart Exacerbates Doxorubicin-Induced Cardiac Dysfunction in Mice

    Get PDF
    BACKGROUND: Cardiac cell death and generation of oxidative stress contribute to doxorubicin (DOX)-induced cardiac dysfunction. E3 ligase Nrdp1 plays a critical role in the regulation of cell apoptosis, inflammation and production of reactive oxygen species (ROS), which may contribute to heart failure. However, the role of Nrdp1 in DOX-induced cardiac injury remains to be determined. METHODS AND RESULTS: We examined the effect of Nrdp1 overexpression with DOX treatment in rat neonatal cardiomyocytes and mouse heart tissue. Cardiomyocytes were infected with adenovirus containing GFP (Ad-GFP), Nrdp1 wild-type (Ad-Nrdp1) or the dominant-negative form of Nrdp1 (Ad-Dn-Nrdp1), then treated with DOX for 24 hr. DOX treatment increased cell death and apoptosis, with Ad-Nrdp1 infection enhancing these actions but Ad-Dn-Nrdp1 infection attenuating these effects. Furthermore, 5 days after a single injection of DOX (20 mg/kg, intraperitoneally), Nrdp1 transgenic mice (TG) showed decreased cardiac function and increased apoptosis, autophagy and oxidative stress as compared with wild-type (WT) mice (P<0.01). Survival rate was significantly lower in Nrdp1 TG mice than in WT mice 10 days after DOX injection (P<0.01). CONCLUSIONS/SIGNIFICANCE: These results were associated with decreased activation of Akt, extracellular signal-regulated kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3) signaling pathways. Nrdp1 may be a key mediator in the development of cardiac dysfunction after DOX treatment and associated with inhibition of Akt, ERK1/2 and STAT3. Nrdp1 may be a new therapeutic target in protecting against the cardiotoxic effects of DOX

    Mitochondrial fission determines cisplatin sensitivity in tongue squamous cell carcinoma through the BRCA1-miR-593-5p-MFF axis

    Get PDF
    Cisplatin has been widely employed as a cornerstone chemotherapy treatment for a wide spectrum of solid neoplasms; increasing tumor responsiveness to cisplatin has been a topic of interest for the past 30 years. Strong evidence has indicated that mitochondrial fission participates in the regulation of apoptosis in many diseases; however, whether mitochondrial fission regulates cisplatin sensitivity remains poorly understood. Here, we show that MFF mediated mitochondrial fission and apoptosis in tongue squamous cell carcinoma (TSCC) cells after cisplatin treatment and that miR-593-5p was downregulated in this process. miR-593-5p attenuated mitochondrial fission and cisplatin sensitivity by targeting the 3’ untranslated region sequence of MFF and inhibiting its translation. In exploring the underlying mechanism of miR-593-5p downregulation, we observed that BRCA1 transactivated miR-593-5p expression and attenuated cisplatin sensitivity in vitro. The BRCA1-miR-593-5p-MFF axis also affected cisplatin sensitivity in vivo. Importantly, in a retrospective analysis of multiple centers, we further found that the BRCA1-miR-593-5p-MFF axis was significantly associated with cisplatin sensitivity and the survival of patients with TSCC. Together, our data reveal a model for mitochondrial fission regulation at the transcriptional and post-transcriptional levels; we also reveal a new pathway for BRCA1 in determining cisplatin sensitivity through the mitochondrial fission program.published_or_final_versio

    Lithium reduces apoptosis and autophagy after neonatal hypoxia–ischemia

    Get PDF
    Lithium is used in the treatment of bipolar mood disorder. Reportedly, lithium can be neuroprotective in models of adult brain ischemia. The purpose of this study was to evaluate the effects of lithium in a model of neonatal hypoxic–ischemic brain injury. Nine-day-old male rats were subjected to unilateral hypoxia–ischemia (HI) and 2 mmol/kg lithium chloride was injected i.p. immediately after the insult. Additional lithium injections, 1 mmol/kg, were administered at 24-h intervals. Pups were killed 6, 24 or 72 h after HI. Lithium reduced the infarct volume from 24.7±2.9 to 13.8±3.3 mm3 (44.1%) and total tissue loss (degeneration + lack of growth) from 67.4±4.4 to 38.4±5.9 mm3 (43.1%) compared with vehicle at 72 h after HI. Injury was reduced in the cortex, hippocampus, thalamus and striatum. Lithium reduced the ischemia-induced dephosphorylation of glycogen synthase kinase-3β and extracellular signal-regulated kinase, the activation of calpain and caspase-3, the mitochondrial release of cytochrome c and apoptosis-inducing factor, as well as autophagy. We conclude that lithium could mitigate the brain injury after HI by inhibiting neuronal apoptosis. The lithium doses used were in the same range as those used in bipolar patients, suggesting that lithium might be safely used for the avoidance of neonatal brain injury

    Variations in Suppressor Molecule CTLA-4 Gene Are Related to Susceptibility to Multiple Myeloma in a Polish Population

    Get PDF
    Various phenotype and functional T-cell abnormalities are observed in multiple myeloma (MM) patients. The aim of this study was to investigate the association between polymorphisms in the gene encoding cytotoxic T-lymphocyte antigen-4 (CTLA-4), a negative regulator of the T-lymphocyte immune response and susceptibility to multiple myeloma in a Polish population. Two hundred MM patients and 380 healthy subjects were genotyped for the following polymorphisms: CTLA-4c.49A>G, CTLA-4g.319C>T, CTLA-4g.*642AT(8_33), CT60 (CTLA-4g.*6230G>A), Jo31 (CTLA-4g.*10223G>T). Our study is the largest and most comprehensive evaluation to date of the association between genetic polymorphisms in the CTLA-4 molecule and multiple myeloma. It was found that CTLA-4c.49A>G[G], CT60[G], and Jo31[G] alleles were more frequently observed in MM patients than in controls (0.50 vs. 0.44, p = 0.03, 0.65 vs. 0.58, p = 0.04, and 0.63 vs. 0.57, p = 0.03, respectively). Moreover, the haplotype CTLA-4c.49A>G[G], CTLA-4g.319C>T[C], CTLA-4g.*642AT(8_33) [8], CT60[G], Jo31[G] including all susceptibility alleles increases the risk of MM about fourfold (OR: 3.79, 95%CI: 2.08–6.89, p = 0.00001). These findings indicate that genetic variations in the CTLA-4 gene play role in susceptibility to multiple myeloma and warrant further investigation through replication studies

    Genic SNP markers and legume synteny reveal candidate genes underlying QTL for Macrophomina phaseolina resistance and maturity in cowpea [Vigna unguiculata (L) Walp.]

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Macrophomina phaseolina </it>is an emerging and devastating fungal pathogen that causes significant losses in crop production under high temperatures and drought stress. An increasing number of disease incidence reports highlight the wide prevalence of the pathogen around the world and its contribution toward crop yield suppression. In cowpea [<it>Vigna unguiculata </it>(L) Walp.], limited sources of low-level host resistance have been identified, the genetic basis of which is unknown. In this study we report on the identification of strong sources of host resistance to <it>M. phaseolina </it>and the genetic mapping of putative resistance loci on a cowpea genetic map comprised of gene-derived single nucleotide polymorphisms (SNPs) and amplified fragment length polymorphisms (AFLPs).</p> <p>Results</p> <p>Nine quantitative trait loci (QTLs), accounting for between 6.1 and 40.0% of the phenotypic variance (R<sup>2</sup>), were identified using plant mortality data taken over three years in field experiments and disease severity scores taken from two greenhouse experiments. Based on annotated genic SNPs as well as synteny with soybean (<it>Glycine max</it>) and <it>Medicago truncatula</it>, candidate resistance genes were found within mapped QTL intervals. QTL <it>Mac-2 </it>explained the largest percent R<sup>2 </sup>and was identified in three field and one greenhouse experiments where the QTL peak co-located with a SNP marker derived from a pectin esterase inhibitor encoding gene. Maturity effects on the expression of resistance were indicated by the co-location of <it>Mac-6 </it>and <it>Mac-7 </it>QTLs with maturity-related senescence QTLs <it>Mat-2 </it>and <it>Mat-1</it>, respectively. Homologs of the <it>ELF4 </it>and <it>FLK </it>flowering genes were found in corresponding syntenic soybean regions. Only three <it>Macrophomina </it>resistance QTLs co-located with delayed drought-induced premature senescence QTLs previously mapped in the same population, suggesting that largely different genetic mechanisms mediate cowpea response to drought stress and <it>Macrophomina </it>infection.</p> <p>Conclusion</p> <p>Effective sources of host resistance were identified in this study. QTL mapping and synteny analysis identified genomic loci harboring resistance factors and revealed candidate genes with potential for further functional genomics analysis.</p

    Polymorphism analysis of the CTLA-4 gene in paracoccidioidomycosis patients

    Get PDF
    The CTLA-4 protein is expressed in activated T cells and plays an essential role in the immune response through its regulatory effect on T cell activation. Polymorphisms of the CTLA-4 gene have been correlated with autoimmune, neoplastic and infectious illnesses. This work aimed to verify possible associations between single nucleotide polymorphisms (SNPs) in CTLA-4, -318C/T in the promoter and +49A/G in exon 1 and paracoccidioidomycosis (PCM) caused by Paracoccidioides brasiliensis. For this purpose, 66 chronic form PCM patients and 76 healthy controls had their allele, genotype and haplotype frequencies determined. The genetic admixture structure of the patients and controls was evaluated to eliminate ancestral bias. The comparison of frequencies indicated no significant differences between patients and controls that could link the SNPs to PCM. Groups were admixture matched with no difference observed in population ancestry inference, indicating that the absence of association between CTLA-4 polymorphisms and PCM could not be attributed to ancestral bias. This study showed that there was no association between the CTLA-4 SNPs -318 and +49 and the resistance or susceptibility to PCM
    corecore