72 research outputs found

    TRIP13 is a protein-remodeling AAA+ ATPase that catalyzes MAD2 conformation switching.

    Get PDF
    The AAA+ family ATPase TRIP13 is a key regulator of meiotic recombination and the spindle assembly checkpoint, acting on signaling proteins of the conserved HORMA domain family. Here we present the structure of the Caenorhabditis elegans TRIP13 ortholog PCH-2, revealing a new family of AAA+ ATPase protein remodelers. PCH-2 possesses a substrate-recognition domain related to those of the protein remodelers NSF and p97, while its overall hexameric architecture and likely structural mechanism bear close similarities to the bacterial protein unfoldase ClpX. We find that TRIP13, aided by the adapter protein p31(comet), converts the HORMA-family spindle checkpoint protein MAD2 from a signaling-active 'closed' conformer to an inactive 'open' conformer. We propose that TRIP13 and p31(comet) collaborate to inactivate the spindle assembly checkpoint through MAD2 conformational conversion and disassembly of mitotic checkpoint complexes. A parallel HORMA protein disassembly activity likely underlies TRIP13's critical regulatory functions in meiotic chromosome structure and recombination

    A deep search for planets in the inner 15 au around Vega

    Get PDF
    We present the results of a deep high-contrast imaging search for planets around Vega. Vega is an ideal target for high-contrast imaging because it is bright, nearby, and young with a face-on two-belt debris disk which may be shaped by unseen planets. We obtained J−J- and H−H-band data on Vega with the coronagraphic integral-field spectrograph Project 1640 (P1640) at Palomar Observatory. Two nights of data were obtained in 2016, in poor seeing conditions, and two additional nights in more favorable conditions in 2017. In total, we obtained 5.5 hours of integration time on Vega in moderate to good seeing conditions (<1.5"). We did not detect any low mass companions in this system. Our data present the most sensitive contrast limits around Vega at very small separations (2-15 au) thus far, allowing us to place new constraints on the companions which may be sculpting the Vega system. In addition to new constraints, as the deepest data obtained with P1640, these observations form the final legacy of the now decommissioned instrument.Comment: Accepted for publication in A

    A Deep Search for Planets in the Inner 15 au around Vega

    Get PDF
    We present the results of a deep high-contrast imaging search for planets around Vega. Vega is an ideal target for high-contrast imaging because it is bright, nearby, and young with a face-on two-belt debris disk that may be shaped by unseen planets. We obtained J- and H-band data on Vega with the coronagraphic integral-field spectrograph Project 1640 (P1640) at Palomar Observatory. Two nights of data were obtained in 2016, in poor seeing conditions, and two additional nights in more favorable conditions in 2017. In total, we obtained 5.5 hours of integration time on Vega in moderate to good seeing conditions (<1farcs5). We did not detect any low-mass companions in this system. Our data present the most sensitive contrast limits around Vega at very small separations (2–15 au) thus far, allowing us to place new constraints on the companions that may be sculpting the Vega system. In addition to new constraints, as the deepest data obtained with P1640, these observations form the final legacy of the now decommissioned instrument

    Longitudinal assessment of cognitive and psychosocial functioning after Hurricanes Katrina and Rita: Exploring disaster impact on middle-aged, older, and oldest-old adults

    Get PDF
    The authors examined the effects of Hurricanes Katrina and Rita on cognitive and psychosocial functioning in a lifespan sample of adults 6-14 months after the storms. Participants were recruited from the Louisiana Healthy Aging Study. Most were assessed during the immediate impact period and retested for this study. Analyses of pre- and post-disaster cognitive data confirmed that storm-related decrements in working memory for middle-aged and older adults observed in the immediate impact period had returned to pre-hurricane levels in the post-disaster recovery period. Middle-aged adults reported more storm-related stressors and greater levels of stress than the two older groups at both waves of testing. These results are consistent with a burden perspective on post-disaster psychological reactions. © 2012 Wiley Periodicals, Inc

    Origins Space Telescope science drivers to design traceability

    Get PDF
    The Origins Space Telescope (Origins) concept is designed to investigate the creation and dispersal of elements essential to life, the formation of planetary systems, and the transport of water to habitable worlds and the atmospheres of exoplanets around nearby K-and M-dwarfs to identify potentially habitable-and even inhabited-worlds. These science priorities are aligned with NASA\u27s three major astrophysics science goals: How does the Universe work? How did we get here? and Are we alone? We briefly describe the science case that arose from the astronomical community and the science traceability matrix for Origins. The science traceability matrix prescribes the design of Origins and demonstrates that it will address the key science questions motivated by the science case

    Gene Expression Profiles in Parkinson Disease Prefrontal Cortex Implicate FOXO1 and Genes under Its Transcriptional Regulation

    Get PDF
    Parkinson disease (PD) is a complex neurodegenerative disorder with largely unknown genetic mechanisms. While the degeneration of dopaminergic neurons in PD mainly takes place in the substantia nigra pars compacta (SN) region, other brain areas, including the prefrontal cortex, develop Lewy bodies, the neuropathological hallmark of PD. We generated and analyzed expression data from the prefrontal cortex Brodmann Area 9 (BA9) of 27 PD and 26 control samples using the 44K One-Color Agilent 60-mer Whole Human Genome Microarray. All samples were male, without significant Alzheimer disease pathology and with extensive pathological annotation available. 507 of the 39,122 analyzed expression probes were different between PD and control samples at false discovery rate (FDR) of 5%. One of the genes with significantly increased expression in PD was the forkhead box O1 (FOXO1) transcription factor. Notably, genes carrying the FoxO1 binding site were significantly enriched in the FDR–significant group of genes (177 genes covered by 189 probes), suggesting a role for FoxO1 upstream of the observed expression changes. Single-nucleotide polymorphisms (SNPs) selected from a recent meta-analysis of PD genome-wide association studies (GWAS) were successfully genotyped in 50 out of the 53 microarray brains, allowing a targeted expression–SNP (eSNP) analysis for 52 SNPs associated with PD affection at genome-wide significance and the 189 probes from FoxO1 regulated genes. A significant association was observed between a SNP in the cyclin G associated kinase (GAK) gene and a probe in the spermine oxidase (SMOX) gene. Further examination of the FOXO1 region in a meta-analysis of six available GWAS showed two SNPs significantly associated with age at onset of PD. These results implicate FOXO1 as a PD–relevant gene and warrant further functional analyses of its transcriptional regulatory mechanisms

    Origins Space Telescope: Baseline mission concept

    Get PDF
    The Origins Space Telescope will trace the history of our origins from the time dust and heavy elements permanently altered the cosmic landscape to present-day life. How did galaxies evolve from the earliest galactic systems to those found in the Universe today? How do habitable planets form? How common are life-bearing worlds? To answer these alluring questions, Origins will operate at mid-and far-infrared (IR) wavelengths and offer powerful spectroscopic instruments and sensitivity three orders of magnitude better than that of the Herschel Space Observatory, the largest telescope flown in space to date. We describe the baseline concept for Origins recommended to the 2020 US Decadal Survey in Astronomy and Astrophysics. The baseline design includes a 5.9-m diameter telescope cryocooled to 4.5 K and equipped with three scientific instruments. A mid-infrared instrument (Mid-Infrared Spectrometer and Camera Transit spectrometer) will measure the spectra of transiting exoplanets in the 2.8 to 20 μm wavelength range and offer unprecedented spectrophotometric precision, enabling definitive exoplanet biosignature detections. The far-IR imager polarimeter will be able to survey thousands of square degrees with broadband imaging at 50 and 250 μm. The Origins Survey Spectrometer will cover wavelengths from 25 to 588 μm, making wide-area and deep spectroscopic surveys with spectral resolving power R ∼ 300, and pointed observations at R ∼ 40,000 and 300,000 with selectable instrument modes. Origins was designed to minimize complexity. The architecture is similar to that of the Spitzer Space Telescope and requires very few deployments after launch, while the cryothermal system design leverages James Webb Space Telescope technology and experience. A combination of current-state-of-the-art cryocoolers and next-generation detector technology will enable Origins\u27 natural background-limited sensitivity
    • …
    corecore