45,597 research outputs found

    Opportunistic Relaying in Time Division Broadcast Protocol with Incremental Relaying

    Get PDF
    In this paper, we investigate the performance of time division broadcast protocol (TDBC) with incremental relaying (IR) when there are multiple available relays. Opportunistic relaying (OR), i.e., the “best” relay is select for transmission to minimize the system’s outage probability, is proposed. Two OR schemes are presented. The first scheme, termed TDBC-OIR-I, selects the “best” relay from the set of relays that can decode both flows of signal from the two sources successfully. The second one, termed TDBC-OIR-II, selects two “best” relays from two respective sets of relays that can decode successfully each flow of signal. The performance, in terms of outage probability, expected rate (ER), and diversity-multiplexing tradeoff (DMT), of the two schemes are analyzed and compared with two TDBC schemes that have no IR but OR (termed TDBC-OR-I and TDBC-OR-II accordingly) and two other benchmark OR schemes that have no direct link transmission between the two sources

    Detection of a new methanol maser line with ALMA

    Full text link
    Aims. We aimed at investigating the structure and kinematics of the gaseous disk and outflows around the massive YSO S255 NIRS3 in the S255IR-SMA1 dense clump. Methods. Observations of the S255IR region were carried out with ALMA at two epochs in the compact and extended configurations. Results. We serendipitously detected a new, never predicted, bright maser line at about 349.1 GHz, which most probably represents the CH3_3OH 14114014_{1} - 14_{0} A+^{- +} transition. The emission covers most of the 6.7 GHz methanol maser emission area of almost 1^{\prime\prime} in size and shows a velocity gradient in the same sense as the disk rotation. No variability was found on the time interval of several months. It is classified as Class II maser and probably originates in a ring at a distance of several hundreds AU from the central star.Comment: 4 pages, 4 figures, accepted by Astronomy and Astrophysic

    Pre-flare coronal dimmings

    Full text link
    In this paper, we focus on the pre-flare coronal dimmings. We report our multiwavelength observations of the GOES X1.6 solar flare and the accompanying halo CME produced by the eruption of a sigmoidal magnetic flux rope (MFR) in NOAA active region (AR) 12158 on 2014 September 10. The eruption was observed by the Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamic Observatory (SDO). The photospheric line-of-sight magnetograms were observed by the Helioseismic and Magnetic Imager (HMI) aboard SDO. The soft X-ray (SXR) fluxes were recorded by the GOES spacecraft. The halo CME was observed by the white light coronagraphs of the Large Angle Spectroscopic Coronagraph (LASCO) aboard SOHO.} {About 96 minutes before the onset of flare/CME, narrow pre-flare coronal dimmings appeared at the two ends of the twisted MFR. They extended very slowly with their intensities decreasing with time, while their apparent widths (8-9 Mm) nearly kept constant. During the impulsive and decay phases of flare, typical fanlike twin dimmings appeared and expanded with much larger extent and lower intensities than the pre-flare dimmings. The percentage of 171 {\AA} intensity decrease reaches 40\%. The pre-flare dimmings are most striking in 171, 193, and 211 {\AA} with formation temperatures of 0.6-2.5 MK. The northern part of the pre-flare dimmings could also be recognized in 131 and 335 {\AA}.} To our knowledge, this is the first detailed study of pre-flare coronal dimmings, which can be explained by the density depletion as a result of the gradual expansion of the coronal loop system surrounding the MFR during the slow rise of the MFR.Comment: 6 pages, 8 figures, to be accepted for publication by A&

    On the equilibrium of the magnetopause current layer

    Get PDF
    Magnetopause current layer equilibriu

    Nonconical theory of flow past slender wing bodies with leading-edge separation

    Get PDF
    Nonconical theory of flow past slender wing bodies with leading edge separatio

    Thermoelectric Properties of Silicon Carbide Nanowires with Nitrogen Dopants and Vacancies

    Full text link
    The thermoelectric properties of cubic zincblend silicon carbide nanowires (SiCNWs) with nitrogen impurities and vacancies along [111] direction are theoretically studied by means of atomistic simulations. It is found that the thermoelectric figure of merit ZT of SiCNWs can be significantly enhanced by doping N impurities together with making Si vacancies. Aiming at obtaining a large ZT, we study possible energetically stable configurations, and disclose that, when N dopants locate at the center, a small number of Si vacancies at corners are most favored for n-type nanowires, while a large number of Si vacancies spreading into the flat edge sites are most favored for p-type nanowires. For the SiCNW with a diameter of 1.1 nm and a length of 4.6 nm, the ZT value for the n-type is shown capable of reaching 1.78 at 900K. The conditions to get higher ZT values for longer SiCNWs are also addressed.Comment: 9 pages, 10 figure
    corecore