194 research outputs found

    Differential DNA methylation marks and gene comethylation of COPD in African-Americans with COPD exacerbations

    Get PDF
    Supplementary data and methods are provided in Additional file 1. This file includes additional methodological details related to study design, Tables S1 and S2, and Figures S1-S3. (DOCX 3650 kb

    Polymorphisms in IL12A and cockroach allergy in children with asthma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>IL12A has been implicated in T-cell development and may thus influence the development of atopy and allergic diseases.</p> <p>Methods</p> <p>We tested for association between four linkage disequilibrium (LD)-tagging SNPs (rs2243123, rs2243151, rs668998, and rs17826053) in <it>IL12A </it>and asthma and allergy-related (serum total and allergen-specific IgE, and skin test reactivity [STR] to two common allergens) phenotypes in two samples: 417 Costa Rican children with asthma and their parents, and 470 families of 503 white children in the Childhood Asthma Management Program (CAMP). The analysis was conducted using the family-based association test (FBAT) statistic implemented in the PBAT program.</p> <p>Results</p> <p>Among Costa Rican children with asthma, homozygosity for the minor allele of each of two SNPs in <it>IL12A </it>(rs2243123 and rs2243151) was associated with increased risks of STR to American cockroach (P ≤ 0.03 for both SNPs), STR to German cockroach (P ≤ 0.01 for both SNPs), and having a positive IgE to German cockroach (P < 0.05 for both SNPs). Among children in CAMP, homozygosity for the minor allele of SNP rs2243151 in <it>IL12A </it>was inversely associated with STR to German cockroach (P = 0.03) and homozygosity for the minor allele of SNP rs17826053 in <it>IL12A </it>was associated with increased risks of STR to American cockroach (P = 0.01) and STR to German cockroach (P = 0.007). There was no significant association between any SNP in <it>IL12A </it>and asthma, STR to dust mite, or total IgE in Costa Rica or CAMP.</p> <p>Conclusion</p> <p>Our findings suggest that variants in <it>IL12A </it>influence cockroach allergy among children with asthma.</p

    Diet-associated vertically transferred metabolites and risk of asthma, allergy, eczema, and infections in early childhood

    Get PDF
    BackgroundEvidence suggests maternal pregnancy dietary intake and nutrition in the early postnatal period to be of importance for the newborn child's health. However, studies investigating diet-related metabolites transferred from mother to child on disease risk in childhood are lacking. We sought to investigate the influence of vertically transferred metabolites on risk of atopic diseases and infections during preschool age. MethodsIn the Danish population-based COPSAC(2010) mother-child cohort, information on 10 diet-related vertically transferred metabolites from metabolomics profiles of dried blood spots (DBS) at age 2-3 days was analyzed in relation to the risk of childhood asthma, allergy, eczema, and infections using principal component and single metabolite analyses. ResultsIn 678 children with DBS measurements, a coffee-related metabolite profile reflected by principal component 1 was inversely associated with risk of asthma (odds ratio (95% CI) 0.78 (0.64; 0.95), p = .014) and eczema at age 6 years (0.79 (0.65; 0.97), p = .022). Furthermore, increasing stachydrine (fruit-related), 3-carboxy-4-methyl-5-propyl-2-furanpropanoate (fish-related), and ergothioneine (fruit-, green vegetables-, and fish-related) levels were all significantly associated with reduced risks of infections at age 0-3 years (p &lt; .05). ConclusionThis study demonstrates associations between pregnancy diet-related vertically transferred metabolites measured in children in early life and risk of atopic diseases and infections in childhood. The specific metabolites associated with a reduced disease risk in children may contribute to the characterization of a healthy nutritional profile in pregnancy using a metabolomics-based unbiased tool for predicting childhood health

    Phosphoric Metabolites Link Phosphate Import and Polysaccharide Biosynthesis for Candida albicans Cell Wall Maintenance

    Get PDF
    ACKNOWLEDGMENTS We declare no conflicts of interest. We thank Jesús Pla for his kind gift of the anti-Mkc1 antibody and Kristin Moffitt and Richard Malley for generous advice in ELISA technology and use of the ELISA reader. We thank Tahmeena Chowdhury for scientific discussions leading up to this work. We thank the Candida Genome Database. N.-N.L., M.A.-Z., W.Q., and J.R.K. were supported by R21 AI137716 and by Boston Children’s Hospital Department of Pediatrics. M.A.-Z. was partially funded by the Alfonso Martin Escudero Foundation. J.D.-A. and O.L. were funded by the Boston Children’s Hospital Department of Pediatrics and U19 AI118608-01A1. N.A.R.G. was supported by the Wellcome Trust and the Medical Research Council Centre for Medical Mycology (MR/N006364/1).Peer reviewedPublisher PD

    Circulating N-formylmethionine and metabolic shift in critical illness : a multicohort metabolomics study

    Get PDF
    Funding Information: KN is supported by Foundation for the National Institutes of Health (NIH)/National Center for Advancing Translational Sciences grant KL2-TR-002385, R01 HL123915. AJR is supported by NIH grant R01 HL152083. LEF is supported by NIH grant R01 HL114839. RMB is supported by NIH grants R01 HL142093 and R01 GM115605. KBC is supported by NIH grant R01 GM115774. The VITdAL-ICU trial was supported by the European Society for Clinical Nutrition and Metabolism (ESPEN), a research grant including provision of study medication from Fresenius Kabi (Germany), and the Austrian National Bank (Jubiläumsfonds, Project Nr. 14143). Landspitali University Hospital Science Fund: A2021-03 Publisher Copyright: © 2022, The Author(s). © 2022. The Author(s).BACKGROUND: Cell stress promotes degradation of mitochondria which release danger-associated molecular patterns that are catabolized to N-formylmethionine. We hypothesized that in critically ill adults, the response to N-formylmethionine is associated with increases in metabolomic shift-related metabolites and increases in 28-day mortality. METHODS: We performed metabolomics analyses on plasma from the 428-subject Correction of Vitamin D Deficiency in Critically Ill Patients trial (VITdAL-ICU) cohort and the 90-subject Brigham and Women's Hospital Registry of Critical Illness (RoCI) cohort. In the VITdAL-ICU cohort, we analyzed 983 metabolites at Intensive Care Unit (ICU) admission, day 3, and 7. In the RoCI cohort, we analyzed 411 metabolites at ICU admission. The association between N-formylmethionine and mortality was determined by adjusted logistic regression. The relationship between individual metabolites and N-formylmethionine abundance was assessed with false discovery rate correction via linear regression, linear mixed-effects, and Gaussian graphical models. RESULTS: Patients with the top quartile of N-formylmethionine abundance at ICU admission had a significantly higher adjusted odds of 28-day mortality in the VITdAL-ICU (OR, 2.4; 95%CI 1.5-4.0; P = 0.001) and RoCI cohorts (OR, 5.1; 95%CI 1.4-18.7; P = 0.015). Adjusted linear regression shows that with increases in N-formylmethionine abundance at ICU admission, 55 metabolites have significant differences common to both the VITdAL-ICU and RoCI cohorts. With increased N-formylmethionine abundance, both cohorts had elevations in individual short-chain acylcarnitine, branched chain amino acid, kynurenine pathway, and pentose phosphate pathway metabolites. CONCLUSIONS: The results indicate that circulating N-formylmethionine promotes a metabolic shift with heightened mortality that involves incomplete mitochondrial fatty acid oxidation, increased branched chain amino acid metabolism, and activation of the pentose phosphate pathway.Peer reviewe
    corecore