View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Harvard University - DASH

"W DIGITAL ACCESS TO
SN SCHOLARSHIP AT HARVARD

Importin-13 genetic variation is associated with improved airway
responsiveness in childhood asthma

The Harvard community has made this article openly available.
Please share how this access benefits you. Your story matters.

Raby, Benjamin A., Kristel Van Steen, Jessica Lasky-Su, Kelan
Tantisira, Feige Kaplan, and Scott T. Weiss. 2009. Importin-13
genetic variation is associated with improved airway
responsiveness in childhood asthma. Respiratory Research 10(1):
67.

Published Version  doi:10.1186/1465-9921-10-67

Accessed February 19, 2015 8:27:21 AM EST

Citable Link http://nrs.harvard.edu/urn-3:HUL .| nstRepos. 4887102

Terms of Use This article was downloaded from Harvard University's DASH
repository, and is made available under the terms and conditions
applicable to Other Posted Material, as set forth at
http://nrs.harvard.edu/urn-3:HUL .InstRepos:dash.current.terms-of -
use#rLAA

(Article begins on next page)


https://core.ac.uk/display/28937109?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=1/4887102&title=Importin-13+genetic+variation+is+associated+with+improved+airway+responsiveness+in+childhood+asthma
http://dx.doi.org/10.1186/1465-9921-10-67
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4887102
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

@,
Respiratory Research BioMed Centa

Research

Importin-13 genetic variation is associated with improved airway
responsiveness in childhood asthma

Benjamin A Raby*1234, Kristel Van Steen>, Jessica Lasky-Sul+4,

Kelan Tantisiral-2:34, Feige Kaplan® and Scott T Weiss12:34

Address: 'Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA, 2Division of Pulmonary
and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA, 3Harvard Medical School, Boston, Massachusetts, USA,
4Center for Genomic Medicine, Brigham and Women's Hospital, Boston Massachusetts, USA, SDepartment of Oto-rhino-laryngology &
Department of Applied Mathematics and Computer Science, University of Ghent, Belgium and ¢Departments of Human Genetics and Pediatrics,
McGill University, Montreal Quebec, Canada

Email: Benjamin A Raby* - rebar@channing.harvard.edu; Kristel Van Steen - kvansteen@gmail.com; Jessica Lasky-Su - jessica.a.su@gmail.com;
Kelan Tantisira - rekgt@channing.harvard.edu; Feige Kaplan - feige.kaplan@mcgill.ca; Scott T Weiss - restw@channing.harvard.edu

* Corresponding author

Published: 20 July 2009 Received: 31 March 2009
Respiratory Research 2009, 10:67  doi:10.1186/1465-9921-10-67 Accepted: 20 July 2009
This article is available from: http://respiratory-research.com/content/10/1/67

© 2009 Raby et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Glucocorticoid function is dependent on efficient translocation of the
glucocorticoid receptor (GR) from the cytoplasm to the nucleus of cells. Importin-13 (IPO13) is a
nuclear transport receptor that mediates nuclear entry of GR. In airway epithelial cells, inhibition
of IPO13 expression prevents nuclear entry of GR and abrogates anti-inflammatory effects of
glucocorticoids. Impaired nuclear entry of GR has been documented in steroid-non-responsive
asthmatics. We hypothesize that common IPO 3 genetic variation influences the anti-inflammatory
effects of inhaled corticosteroids for the treatment of asthma, as measured by change in
methacholine airway hyperresponsiveness (AHR-PC,,).

Methods: 10 polymorphisms were evaluated in 654 children with mild-to-moderate asthma
participating in the Childhood Asthma Management Program (CAMP), a clinical trial of inhaled anti-
inflammatory medications (budesonide and nedocromil). Population-based association tests with
repeated measures of PC,, were performed using mixed models and confirmed using family-based
tests of association.

Results: Among participants randomized to placebo or nedocromil, IPO13 polymorphisms were
associated with improved PCy (i.e. less AHR), with subjects harboring minor alleles demonstrating
an average |.51-2.17 fold increase in mean PC,, at 8-months post-randomization that persisted
over four years of observation (p = 0.01-0.005). This improvement was similar to that among
children treated with long-term inhaled corticosteroids. There was no additional improvement in
PC,, by IPO13 variants among children treated with inhaled corticosteroids.

Conclusion: IPO| 3 variation is associated with improved AHR in asthmatic children. The degree
of this improvement is similar to that observed with long-term inhaled corticosteroid treatment,
suggesting that IPO |3 variation may improve nuclear bioavailability of endogenous glucocorticoids.
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Background

Endogenous glucocorticoids (GCs) serve a broad range of
biological and physiological processes, including meta-
bolic control, induction of anti-inflammatory cascades,
and fetal organ maturation. In the context of the lung,
GCs modulate airway branching morphogenesis[1,2],
augment production of surfactant in late gestation[3], and
promote alveolar formation[4]. As a result of their potent
anti-inflammatory properties, exogenous GCs also serve
as the most commonly used treatment for the long-term
control of asthma|5] by effectively reducing airway hyper-
responsiveness (AHR) and asthma symptoms[6], prevent-
ing exacerbations[7], and reducing asthma-associated
mortality[8].

Though the precise molecular mechanisms that explain
the diverse effects of GC have yet to be completely
defined, nearly all GC effects result through cell-specific
transcriptional regulation following binding of GC (in
complex with the glucocorticoid receptor - GR) to posi-
tive and negative GC response elements in the promoter
region of genes[9,10]. In its unbound state, GC is typically
sequestered in the cytoplasm by molecular chaperones|9].
To access its genomic targets, GC-GR complexes must first
pass from the cytoplasm to the nucleus through nuclear
pore complexes. This process of GC- receptor shuttling
across the nuclear-cytoplasmic membrane is tightly regu-
lated by the interaction of cell-specific nuclear transport
factors with cognate nuclear localization sequences[11].
Importin-13 (IPO13) was initially cloned in a search for
GC-regulated genes important in lung development|[12],
and found to be differentially expressed during fetal lung
growth with enrichment in lung epithelium relative to the
mesenchyme. More recently, we (FK) demonstrated that
IPO13 silencing prevents GC transport across the cyto-
plasmic-nuclear membrane in airway epithelium and
abrogates GC-induced anti-inflammatory responses, sug-
gesting that IPO13 is a critical nuclear transporter of GC
receptor in the airway epithelium[13].

Although most asthmatics demonstrate an improvement
in asthma control with long-term inhaled GC therapy,
large inter-individual variation in response to inhaled
GCs is well documented [14-16]. While some patients do
respond to higher doses than normally prescribed, the
administration of these doses for prolonged periods can
have marked adverse effects. The identification and char-
acterization of genetic determinants of GC responsiveness
would provide insight into GC pharmacology and asthma
pathogenesis. Given its demonstrated ability to mediate
anti-inflammatory GC effects (particularly in airway epi-
thelium), we considered that IPO13 represented a com-
pelling biologic candidate gene for pharmacogenetic
responsiveness to glucocorticoid therapy for asthma. To
assess whether common IPO13 DNA sequence variants

http://respiratory-research.com/content/10/1/67

influence treatment response to inhaled corticosteroids,
we genotyped 10 common IPO13 variants in a cohort of
children with asthma participating in a clinical trial eval-
uating the long-term efficacy of inhaled anti-inflamma-
tory medication (including budesonide, a commonly
prescribed inhaled GC)[17]. Herein we report that [IPO13
variants differentially influenced airway hyperresponsive-
ness by treatment group, with improvements in AHR
noted among subjects who were randomized to either pla-
cebo or nedocromil to levels similar to subjects who were
randomized to budesonide, suggesting that common
IPO13 variants may increase the nuclear bioavailability of
endogenous GCs.

Methods

Population

CAMP is a multicenter, randomized, double-blinded clin-
ical trial testing the safety and efficacy of inhaled budeso-
nide (200 ug twice daily) vs. nedocromil (8 mg twice
daily) vs. placebo over a mean of 4.3 years. Trial design
and methodology have been published[17,18]. CAMP
enrolled 1,041 children ages 5 to 12 years with mild to
moderate asthma. Entry criteria included asthma symp-
toms and/or medication use for > 6 months in the previ-
ous year and airway responsiveness with PC,,< 12.5 mg/
ml. Follow-up visits with spirometry occurred at two and
four months and every four months thereafter. Metha-
choline studies were performed during the run-in period,
at 8 months post-randomization, then yearly thereafter.
968 children and 1,518 parents contributed DNA sam-
ples, including those of self-reported white (654 children
and 950 parents), African-American (131 and 128), and
Hispanic (86 and 94) ancestry[19]. Given the relatively
small sample sizes of the non-white ethnic groups in
CAMP and to avoid spurious association due to popula-
tion stratification, association analyses were restricted to
white probands (Table 1).

Human Subjects

The Institutional Review Boards of the Brigham and
Women's Hospital and of the other CAMP study centers
approved this study. Informed assent and consent were
obtained from the study participants and their parents to
collect DNA for genetic studies.

SNP genotyping

SNPs were genotyped using SEQUENOM?® (Sequenom,
San Diego, CA). Primers and reaction conditions are avail-
able upon request. One SNP (rs2301993) that failed was
genotyped using a TagMAN™ assay (PE Biosystems, Foster
City, CA). All SNP passed quality control, including high
genotype completion rates (>95%), less than 1% geno-
type discordance upon repeat genotyping of a random
sample of ~5-10% of the cohort, and lack of parental-off-
spring genotype incompatibilities.
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Table I: Baseline characteristics of probands in CAMP
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Variables Values
Sex — N (%)
Male 393 (60.1%)
Female 261 (39.9%)
Age — Years, Mean (std) 89 (2.1)
Age asthma onset — Years, Mean (std) 3.0 (24)
Forced expiratory volume (I sec), post-bronchodilator
Liters, Mean (std) 1.83 (0.50)
% predicted, Mean (std) 103.5 (12.6)

Methacholine PC,,— mg/dl, geometric mean (IQR)

1.08 (0.47 — 2.72)

Total serum IgE levels — IU/L, geometric mean (IQR)

402 (156 — 1069)

std = standard deviation
IQR = interquartile range

SNP discovery

Bidirectional dye-terminator sequencing was performed
according to protocol (Applied Biosystems, Foster City,
CA) targeting all exons, intron-exon boundaries and 1 kb
of flanking genomic sequence at the IPO13 locus in 23
white CAMP subjects selected to ensure representation of
all four IPO13 haplotypes. Primers were designed using
Primer3, and sequence analysis was performed using the
3130 DNA Analyzer (ABI).

Statistical analysis

Linkage disequilibrium (LD) and haplotype block analy-
sis was performed using Haploview[20]. We assessed
methacholine PC,, as the primary outcome of interest as
it was the lung-function related phenotype most impacted
by inhaled glucocorticoid treatment in the CAMP trial.
Methacholine-PC,, - the dose of methacholine at which a
20% drop in the Forced Expiratory Volume in one second
(FEV,) from baseline was observed - was log,, trans-
formed to achieve a normal distribution. We adjusted all
association tests for baseline (pre-randomization) PC,,,
age, gender, height, study center and visit. The primary
clinical trial demonstrated equivalence of nedocromil and
placebo with respect changes in airways responsiveness,
lung function, and other clinical outcomes|[17]. We there-
fore grouped subjects in these two groups for comparison
with those participants randomized to budesonide in
order to maximize statistical power. The primary analysis
was a longitudinal analysis of methacholine-PC,, using
the PROC MIXED procedure in SAS assuming a power
spatial variance-covariance structure, with random slopes
and intercepts estimated using Maximum Likeli-

hood[21,22]. We confirmed results using family-based
methods (FBAT-PC[23] in PBAT[24]) to exclude spurious
association due to occult population stratification and to
perform haplotype association testing. Primary hypothe-
sis testing was performed assuming additive genetic
effects. However, because of the relatively small numbers
of rare homozygotes within treatment strata, subsequent
estimates of genetic effect, tests for gene-by-treatment
group interaction, and haplotype analysis were performed
assuming a dominant genetic model. Point estimates of
the effect of IPO13 polymorphism carrier status on meth-
acholine PC,, were determined using generalized linear
models (PROC GLM).

To control type I error, the primary analysis of association
of IPO13 SNPs with PC,, was adjusted for multiple com-
parisons based on the methods of Nyholt|25] as modified
by Li and Ji[26], as implemented in SNPSpD http://
gump.gimr.edu.au/general/daleN/SNPSpD/. We first cal-
culated the effective number of independent marker loci
tested (M,q;), defined by (i) calculating the correlation
matrix (i.e. pairwise LD) across all markers using all avail-
able genotype data; (ii) measuring the collective correla-
tion across the set of markers as the variance of the
eigenvalues from this LD matrix; and (iii) using this meas-
ure of collective correlation to calculate the proportional
reduction in the number of independent markers. In the
CAMP population, the calculated collective correlation
was high (variance of the observed eigenvalues = 2.4144)
resulting in an estimated M,q; of 6 markers, and an
adjusted alpha of 0.0085 (see Table 2). We note that
because our primary hypothesis testing evaluated two
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Table 2: IPO 13 SNP pairwise LD correlation matrix used for MeffLi estimation

| 2 3 4 5 6 7 8 9 10

| | -0.49 -0.23 0.49 0.19 0.37 0.54 0.40 0.53 0.39
2 -0.49 | -0.69 -0.37 0.17 -0.12 -0.33 -0.23 -0.29 -0.16
3 -0.23 -0.69 | -0.06 -0.12 -0.19 -0.12 -0.31 -0.37 -0.25
4 0.49 -0.37 -0.06 | 0.27 0.54 0.8l 0.47 0.64 0.53
5 0.19 0.17 -0.12 0.27 | 0.50 0.28 0.32 0.41 0.41
6 0.37 -0.12 -0.19 0.54 0.50 | 0.56 0.85 0.69 0.89
7 0.54 -0.33 -0.12 0.8l 0.28 0.56 | 0.58 0.76 0.56
8 0.40 -0.23 -0.31 0.47 0.32 0.85 0.58 | 0.72 0.86
9 0.53 -0.29 -0.37 0.64 0.41 0.69 0.76 0.72 | 0.74
10 0.39 -0.16 -0.25 0.53 0.41 0.89 0.56 0.86 0.74 |

Matrix derived using all genotyped subjects. Calculated Eigenvalues are 5.2038, 1.5631, 1.1038, 0.7787, 0.5207, 0.3532, 0.1898, 0.1183, 0.0993 and

0.0693, with a resultant observed eigenvalue variance of 2.4231.

treatment states (budesonide group vs. other), we further
adjusted for two sets of tests, resulting in an experiment-
wise significance threshold of 0.00425.

Results

SNP genotyping

The ten IPO13 SNPs evaluated in this study were selected
from build 119 of dbSNP in order to achieve an average
spacing of approximately 1 SNP every 5 kb across the
IPO13 locus and its 20 kb flanking sequence (Figure 1a).
Among non-Hispanic whites, all 10 SNPs had a minor
allele frequency (MAF) of at least 0.05, and pair-wise LD
high (median pair-wise D' 0.99, interquartile range of
0.98-1.0; see Figure 1b), suggesting very limited haplo-
type diversity. Indeed, the 10 SNP form only four com-
mon haplotypes (Figure 1c), which can be
unambiguously classified by several possible combina-
tions of three tagging-SNPs (one representative set
denoted with arrowheads in Figure 1c). The genotyped
SNP capture nearly all reported common variation at the
IPO13 locus, in that they efficiently tag (r2> 0.80) all but
two of the 21 SNPs with available genotype information
in the HapMap families of northern and western Euro-
pean ancestry. This high degree of LD implies substantial
redundancy with regard to the number of independent
observations made in the association studies to be
described below. Using the spectral decomposition of
matrices (see Methods and references [25] and [26]) we
estimated that the 10 genotyped variants effectively repre-
sent only 6 independent markers for association testing.

Associations of IPO | 3 with airways hyperresponsiveness in

CAMP

As outlined in the introduction, we initially hypothesized
that IPO13 polymorphisms would impact individual
responsiveness to inhaled corticosteroid responsiveness
for the treatment of asthma given the documented role of
IPO13 as an active nuclear transporter for receptor-bound
glucocorticoid. The CAMP clinical trial demonstrated that

inhaled corticosteroid therapy (budesonide 200 ug
administered twice daily), as compared to placebo or
nedocromil, most significantly impacted methacholine
PC,, measurements rather than other spirometric meas-
ures of lung function|[17]. We therefore focused our anal-
ysis on whether IPO13 variants impacted PC,, over the
course of the clinical trial, and whether any observed
effects were limited to subjects randomized to inhaled
budesonide. As demonstrated in Table 3, all IPO13 vari-
ants tested (with the exception of 1s2240447) demon-
strated some evidence of association with methacholine
PC,, during the clinical trial, with two variants
(rs6671164 and 1s2301993) demonstrating significant
association after multiple comparison adjustment for 12
tests (6 effective independent markers by 2 treatment
strata, corrected alpha = 0.00425). However, in contrast to
our assumptions that significant differences would be due
to an effect in the budesonide treated group, stratified
analysis clearly demonstrated that all of the observed
effects were due to differences in the subjects who were
not randomized to budesonide. These associations were
not likely due to occult population stratification, as fol-
low-up family-based association testing (which is
immune to the effects of population stratification) dem-
onstrated similar patterns of association (Table 4).

Though this longitudinal analysis of quantitative meas-
ures collected over the course of the clinical trial provides
greatest statistical power, clinical interpretation is often
more easily appreciated from cross-sectional analyses at
discrete time points. As such, we next quantified the
impact of IPO13 variants on methacholine PC,, in each
treatment strata by estimating the SNP-specific fold-
change in geometric mean methacholine PC,, at 8-
months post-randomization (the time point during the
clinical trial when maximal treatment response was noted
and with fewest missing measurements). As shown in
Table 5 and in keeping with the repeated measures analy-
sis described above, carriers of [IPO13 variants who were
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Genetic structure of IPOI3. Panel A: Relative position of 10 variants genotyped on physical map of chromosome |p34
region including IPO13. DPH2 = diphthamide biosynthesis protein 2. ATP6VOB = B component of vacuolar ATPase. Panel B:
Pair-wise linkage disequilibrium. Numbers denote pair-wise r2 values. Color key denotes strength of pair-wise D'. SNP form
one large haplotype block spanning genomic segment. Panel C: IPO |3 haplotype structure. Blue = common allele, red = minor
allele. Haplotype frequency in CAMP probands of self-reported white ancestry presented on right. Arrowheads denote one of
several haplotype-tagging SNP combinations. This 3-SNP combination (rs6671164 — rs199150 — rs2428953) was used for hap-
lotype association analysis in this study.
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Table 3: Impact of IPO 13 polymorphisms on methacholine hyperresponsiveness (PC,() in childhood asthma

Treatment-s

tratified analysis

SNP Genic location MAF All subjects (n = 654) Budesonide (n = 214) Placebo or Nedocramil (n = 440)
rs6671164 5' genomic 0.223 0.002 0.004
rs4448553 5' genomic 0.223 0.02 0.0l
rs1990150 Intron | 0.148 0.02 0.04
rs2240447 Exon 2 0.224 - -
rs2486014 Intron 2 0.097 0.04 -
rs2301993 Intron 12 0.222 0.002 0.001
rs2301992 Intron 13 0.049 0.02 0.03
rs1636879 Intron 14 0.102 0.02 0.04
rs7412307 3' genomic 0.184 0.02 0.04
rs2428953 3' genomic 0.11 0.002 0.005

Results based on repeated-measures analysis assuming an additive genetic model with log,,-PC,,. All analyses are adjusted for PC20 prior to
treatment randomization, age, gender, height, study center and study visit. All-subject analysis adjusted for treatment-arm assignment (budesonide
vs. other). MAF = minor allele frequency. "-" denotes nominal p-value > 0.05.

Table 4: Family-based association analysis of IPO13 polymorphisms on methacholine hyperresponsiveness (PC,,) in childhood

asthma.
Nedocromil/Placebo Budesonide
Marker Number of informative Families P-value Number of informative families P-value
rs6671164 48 0.042 16 0.504
rs4448553 46 0.005 18 0.694
rs1990150 21 0.094 7 0.225
rs2240447 46 0.008 18 0.498
rs2486014 10 0.144 2 0.419
rs2301993 47 0.004 16 0.532
rs2301992 5 0.313 2 0.621
rs1636879 10 0.329 3 0.322
rs7412307 38 0.108 14 0.865
rs2428953 13 0.708 5 0.221
Treatment-stratified analysis of repeated measures of methacholine PC,, performed using FBAT-PC as implemented in PBAT.
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Table 5: Fold-change in methacholine PC, by treatment group at 8-months post-randomization among IPOI3 variant carriers

Budesonide (n = 214)

Nedocromil/Placebo (n = 440)

SNP Fold change (95% ClI) p-value Fold change (95% ClI) p-value Test for interaction
rs6671 164 0.81 (0.38 - 1.68) 0.56 1.65 (1.05 —2.61) 0.03 0.13
rs4448553 0.84 (0.40 — 1.77) 0.65 1.58 (1.00 —2.51) 0.05 0.20
rs1990150 0.72 (0.31 — 1.69) 0.45 2.25 (1.35-3.74) 0.002 0.02
rs2240447 0.72 (0.34 - 1.53) 0.39 1.82 (1.14 —2.89) 0.0l 0.05
rs2486014 0.99 (0.37 —2.62) 0.98 1.97 (1.10 — 3.53) 0.02 0.21
rs2301993 0.83 (0.39-1.79) 0.64 1.80 (1.13 —2.86) 0.0l 0.11
rs2301992 0.48 (0.15 - 1.52) 0.21 1.64 (0.78 — 3.47) 0.19 0.08
rs1636879 1.02 (0.38 — 2.74) 0.96 2.14 (1.20 - 3.83) 0.0l 0.11
rs7412307 0.74 (0.34 — 1.60) 0.44 1.84 (1.14 —2.96) 0.0l 0.06
rs2428953 0.67 (0.26 — 1.70) 0.40 2.30 (1.32 - 4.00) 0.003 0.02

Models adjusted for baseline logl0-PC,,, age, gender, height and clinic. Fold-change and confidence limits derived using beta-estimates derived from

generalized linear models.

randomized to placebo or nedocromil demonstrated
between a 1.6 and 2.3 fold increase in methacholine PC,,
compared to non-carriers for most SNP, whereas no sig-
nificant difference in methacholine PC,, was noted for
any SNP among subjects randomized to budesonide. Sub-
tle differences in statistical significance (but not genetic
effect estimates) were observed between the repeated
measures and 8-month analyses (for example rs2301992
was not statistically significant in the 8-month cross-sec-
tion analysis, while 152240447 and 152486014 demon-
strated statistical significance only in the repeated
measures analysis), suggesting instability in the variances
in effect for these SNP in comparison to the others. None-
theless, the general patterns across the locus were similar
in both analyses and suggest that common IPO13 variants
are associated with reduced airways responsiveness.

Figure 2 illustrates the differential effects of one represent-
ative polymorphism (rs2428953) on airway responsive-
ness over the course of the clinical trial. As can be seen, T-
allele carriers on placebo or nedocromil had improve-
ments in PC,, values over the course of the trial that
approached those observed among subjects who were
treated with budesonide. In keeping with the longitudinal
analysis, similar profiles were observed for the other
IPO13 SNP, with carriers of the minor alleles at all loci
(with the exception of 1s2240447 and rs2301993) rand-
omized to placebo or nedocromil demonstrating signifi-

cantly less airways responsiveness compared to non-
carriers (data not shown). From these data, we conclude
that IPO13 variation influences the natural progression of
methacholine PC,, among children with asthma, result-
ing in significantly less severe airway hyperresponsive-
ness, and approaching levels achieved with inhaled
corticosteroid therapy. These data also suggest that the
addition of inhaled corticosteroids confers no additional
benefit among IPO13 carriers, though our study is under-
powered to formally test that specific interaction. We also
note that airway hyperresponsiveness was lowest among
subjects homozygous for [IPO13 variants (for example, the
mean logPC,, was 1.31 among SNP 152428953 TT
homozygotes compared to 0.77 among heterozygotes),
suggesting an additive genetic relationship, though the
number of subjects with rare homozygous genotypes was
generally too small (13 in the non-budesonide group, 2 in
the budesonide group) to make formal statements regard-
ing the significance of this observation.

Haplotype association analysis

As described above, four common (frequency > 1%)
IPO13 haplotypes are observed in this cohort. We
assessed whether the associations observed above could
be attributed to specific haplotypes, we preformed a fam-
ily-based haplotype association test using one representa-
tive set of haplotype-tagging SNP (rs1990150, 1s2240447,
and rs1636879 - arrow heads in Figure 1c). Similar to the
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Impact of IPO 13 polymorphism rs2428953 on airway hyperresponsiveness. Mean log(methacholine PC,) values and
SEM. Common genotype (CC) denoted by solid black lines, heterozygotes and TT homozygotes denoted by dashed red lines.
Open circles denote placebo/nedocromil groups, closed circles represent budesonide groups. Vertical line at 0 months
denotes time of randomization. Airway hyperresponsiveness was significantly different (p < 0.05) between the placebo/
nedocromil subjects with CC genotype and all other subjects at all time points following randomization, as denoted by (¥).

single SNP analysis, treatment-stratified haplotype analy-
sis demonstrated association with methacholine PC,,
among subjects randomized to placebo or nedocromil
only (global p-value for test of association of IPO13 locus
= 0.02), but not among subjects randomized to budeso-
nide (p = 0.58). Inspection of the haplotype-specific p-val-
ues (Table 6) suggests that the primary association is with
haplotype B (haplotype specific p-value = 0.02), though
the relatively small number of informative families avail-
able for evaluating haplotypes C and D preclude definitive
statements regarding these later haplotypes.

SNP discovery

Resequencing of the IPO13 locus in 23 CAMP subjects
selected to ensure representation of all four common
IPO13 haplotypes identified 8 variants that had not been
genotyped, including four not present in the dbSNP data-
base (Table 7). Two were potentially functional (a non-

synonymous Asp891Ser substitution and a highly con-
served non-coding variant), though their low frequency
(each was observed only once) and presence only on the
common haplotype A background (not the PC,, associ-
ated background) suggest that they are not responsible for
the observed associations with PC,,,.

Discussion

Herein, we observed significant associations of common
IPO13 polymorphisms with airway responsiveness (the
most dynamic treatment response phenotype in the
CAMP clinical trial) among children with mild-to-moder-
ate asthma. These associations were observed exclusively
among those children who were not randomized to
inhaled GCs, and persisted over the ~4.5 years of clinical
observation. The genetic effects conferred by these [PO13
variants were clinically significant, with an average 1.5-
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Table 6: Family-based haplotype association analysis of IPO 13 polymorphisms on methacholine hyperresponsiveness (PC20) in

childhood asthma.

Nedocromil/Placebo (global p-value = 0.02)

Budesonide (global p-value = 0.58)

Haplotype Number of informative families P-value Number of informative families P-value
A 136 0.41 53 0.33
B 84 0.02 33 0.53
Cc 69 0.17 20 0.41
D 43 0.48 18 0.50

Haplotype analysis was performed using one of several haplotype-tagging SNP combinations: rs6671 164 — rs199150 — rs2428953. The haplotype

designations A through D correspond to those illustrated in Figure I.

2.1 fold increase in mean PC,, among carriers of IPO13
variants.

IPO13 has been functionally characterized as a primary
regulator of GC-bound GR transport across the nuclear
membrane. Inhibition of lung epithelial cell [IPO13 pro-
duction inhibits nuclear translocation of GR from the
cytoplasm and subsequent GC-mediated silencing of
inflammatory cytokine production|[13], suggesting that
the normal anti-inflammatory response induced by GC is
dependent on normal IPO13 function. In light of these
observations, it is curious that the genetic effects observed
in the current study were observed only among subjects
who were not taking daily corticosteroids. We propose
two possible mechanisms to explain these findings. The
first is developmental. IPO13 was first identified in stud-
ies of lung development, where IPO13 (initially known as

LGL2) was found to be differentially expressed in fetal rat
lung cell culture[12]. It is conceivable that IPO13 varia-
tion impacts airway hyperresponsiveness by altering air-
way anatomy through changes during airway
morphogenesis and development. Though plausible, the
absence of association of IPO13 variants with baseline
lung function in the current study (data not shown) sug-
gests that this is not likely the case. However, given the
diverse roles of glucocorticoid during lung morphogene-
sis (see Introduction) and the considerable impact on
lung development by aberrant perinatal glucocorticoid
exposure[27,28], we are hesitant to completely discount
this possibility at this time.

A second possible mechanism of action is that IPO13 var-
iants improve airway hyperresponsiveness by enhancing
the local anti-inflammatory effects of circulating, endog-

Table 7: IPOI13 polymorphisms identified through SNP discovery effort

SNP Alleles MAF rs number Chr | position (in bp from pter) Conserved base*
-1022 C>G CIG 0.043 - 44184837 No
Asp415Asp CIT 0.043 rs17402858 44195209 Yes
IVSI1-13 C>T CIT 0.050 - 44196992 No
IVS14+14 A>G AIG 0.043 rs2906596 44199535 No
IVS17+46 G>C G/C 0.174 rs4660759 44205087 No
Asp891Ser GIT 0.022 - 44205631 Yes
g20431 A>G AIG 0.022 - 44206290 Yes
g21341 A>G AIG 0.087 rs2486007 44207200 No

The nomenclature for discovered variation provided here follows that recommended by den Dunnen and Antonarakis[29]. Asp = Aspartic Acid;
Ser = Serine; VS denotes intervening sequence (i.e. intronic) SNP. MAF = minor allele frequency.
* Conservation based on 8-species sequence alignment as derived using Phylo-HMMs[30].
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enous GCs by facilitating increased GR transport into the
nucleus and thus increasing the effective bioavailability of
endogenous GC. Supporting this hypothesis is the obser-
vation that carriers of IPO13 variants who were not on
inhaled steroid exhibited improvements in airway respon-
siveness over the course of the clinical trial that
approached those for subjects who were taking inhaled
steroids (see Figure 2), suggesting that that IPO13 varia-
tion enhances endogenous GC nuclear availability to ther-
apeutic levels. It has been previously demonstrated that
nucleocytoplasmic shuttling of IPO13 is developmentally
regulated and highly variable in rat lung[12,13]. Sequence
variation could potentially influence this regulation by
increasing nuclear membrane availability through
increased IPO13 expression or by altering the kinetic
properties of GR transport by influencing GR binding
affinities. We note that the paucity of coding variation at
the IPO13 identified through our resequencing efforts
suggests that the genetic effects observed are likely due to
regulatory variation rather than structural changes.
Though studies are currently ongoing to explore these
possibilities, we note that because none of the airway
responsiveness-associated non-coding variants map to
highly conserved genetic sequence and are not predicted
to harbor transcription factor binding sites, it is unlikely
that we have as of yet identified a putative functional var-
iant.

It is noteworthy that the associated haplotype block not
only spans the IPO13 locus, but two neighboring genes as
well: ATP6VOB and DHP2 (Figure 1). Though it is not pos-
sible to completely exclude these other genes as function-
ally responsible for the observed associations, it is
unlikely to be the case. The motivation for studying these
polymorphisms was the recognition of IPO13 as the pri-
mary nuclear transporter for steroid-bound glucocorti-
coid. Had we identified these variants through a
hypothesis-free approach (i.e. a genome-wide study), the
pretest probability for each gene in the region would be
similar. However, because these SNPs were chosen due to
the biologic prior on IPO13, it would be improbable that
the true functional effects would be mediated through a
neighboring gene. Unlike IPO13, there is little biological
evidence to support either ATP6VOB or DHP2 in either the
pathogenesis of airways responsiveness or glucocorticoid
pharmacogenetics. ATP6VOB is a subunit of the vacuolar-
type H(+)-ATPase (V-ATPase) multisubunit enzyme,
responsible for organelle acidification. DHP2 encodes a
protein involved in diphthamide biosynthesis that con-
fers resistance in yeast to the effects of diphtheria toxin.
Though surveys of genomic databases (including Uni-
Gene and GEO) suggest that ATP6V06 is ubiquitously
expressed and DHP2 is weakly expressed in the lung, there
is little reason to suspect either as the responsible locus.

http://respiratory-research.com/content/10/1/67

In genetic association studies of complex traits such as air-
way  hyperresponsiveness and  pharmacogenetic
responses, it is important to consider a variety of method-
ological and statistical issues that can hamper proper
interpretation of observed findings. Two features of the
current study warrant particular attention: phenotype
misclassification and statistical power. Most observa-
tional studies of the genetics of asthma attempt to avoid
confounding of lung phenotype measurements by medi-
cation use by performing spirometric and airway hyperre-
sponsiveness measurements following a short period (less
than 24-48 hours) off anti-asthma controller medica-
tions. However, due to safety consideration, long-term
avoidance of asthma controller medication is typically not
permitted. The randomized, placebo-controlled trial is
perhaps the only setting in which such confounding can
be eliminated, and is a major strength of the study pre-
sented here. It is directly a result of the availability of ~4.5
years of repeated methacholine challenge measurements
off anti-inflammatory agents among more than two-
thirds of CAMP participants who were randomized to pla-
cebo or nedocromil that enabled detection of the
observed associations in this study. In light of the differ-
ences in genetic effect observed across treatment arms, we
stress that future attempts to replicate our findings should
use approaches that address this issues, as replication may
only be possible when proper adjustment for glucocorti-
coid use are made.

Subjects randomized to inhaled budesonide represent
only 1/3 of the cohort. We recognize that this relatively
smaller sample size is inadequately powered to detect
strong genetic effects with alleles of modest frequency,
and that it is possible that an effect similar to that
observed among those not on steroids could potentially
have been observed among steroid users had the number
of subjects in this latter group approached those of the
former. However, we note that sample size impacts only
the ability to claim a statistically significant difference in
genotype effect but does not in any way influence the
absolute effect observed. In this study, the trends of asso-
ciation among those on budesonide were quite dissimilar
to those observed among subjects not on budesonide,
with all variants actually conferring greater airway respon-
siveness (though the confidence intervals in this group are
quite broad and all span the null). Therefore, while we
stress that our conclusions reported herein apply only to
those subjects in the non-budesonide arm, it is likely that
differential effects of these alleles are present between sub-
jects who were and were not taking steroids.

Conclusion

We have demonstrated that genetic variation in IPO13 is
associated with reduced airway hyperresponsiveness
among children with mild-to-moderate asthma who are
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not using long-term inhaled corticosteroids. The degree of
this reduction is similar to the improvements noted
among those children on long-term corticosteroids, sup-
porting the notion that [PO13 variation improves endog-
enous glucocorticoid bioavailability in the cell nucleus.
We are currently performing functional studies using
patient-derived cell lines representing the spectrum of
IPO13 genetic variation to explore this possibility.
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