60 research outputs found

    Colour and Odour Drive Fruit Selection and Seed Dispersal by Mouse Lemurs

    Get PDF
    Animals and fruiting plants are involved in a complex set of interactions, with animals relying on fruiting trees as food resources, and fruiting trees relying on animals for seed dispersal. This interdependence shapes fruit signals such as colour and odour, to increase fruit detectability, and animal sensory systems, such as colour vision and olfaction to facilitate food identification and selection. Despite the ecological and evolutionary importance of plant-animal interactions for shaping animal sensory adaptations and plant characteristics, the details of the relationship are poorly understood. Here we examine the role of fruit chromaticity, luminance and odour on seed dispersal by mouse lemurs. We show that both fruit colour and odour significantly predict fruit consumption and seed dispersal by Microcebus ravelobensis and M. murinus. Our study is the first to quantify and examine the role of bimodal fruit signals on seed dispersal in light of the sensory abilities of the disperser

    Substrate effects in the photoenhanced ozonation of pyrene

    Get PDF
    We report the effects of actinic illumination on the heterogeneous ozonation kinetics of solid pyrene films and pyrene adsorbed at air-octanol and air-aqueous interfaces. Upon illumination, the ozonation of solid pyrene films and pyrene at the air-aqueous interface proceeds more quickly than in darkness; no such enhancement is observed for pyrene at the air-octanol interface. Under dark conditions, the reaction of pyrene at all three interfaces proceeds via a Langmuir-Hinshelwood-type surface mechanism. In the presence of light, Langmuir-Hinshelwood kinetics are observed for solid pyrene films but a linear dependence upon gas-phase ozone concentration is observed at the air-aqueous interface. We interpret these results as evidence of the importance of charge-transfer pathways for the ozonation of excited-state pyrene. The dramatically different behaviour of pyrene at the surface of these three simple reaction environments highlights the difficulties inherent in representing complex reactive surfaces in the laboratory, and suggests caution in extrapolating laboratory results to environmental surfaces

    Comprehensive assessment of meteorological conditions and airflow connectivity during HCCT-2010

    Get PDF
    This study presents a comprehensive assessment of the meteorological conditions and atmospheric flow dur- ing the Lagrangian-type “Hill Cap Cloud Thuringia 2010” experiment (HCCT-2010), which was performed in Septem- ber and October 2010 at Mt. Schmücke in the Thuringian Forest, Germany and which used observations at three measurement sites (upwind, in-cloud, and downwind) to study physical and chemical aerosol–cloud interactions. A Lagrangian-type hill cap cloud experiment requires not only suitable cloud conditions but also connected airflow condi- tions (i.e. representative air masses at the different measure- ment sites). The primary goal of the present study was to identify time periods during the 6-week duration of the ex- periment in which these conditions were fulfilled and there- fore which are suitable for use in further data examinations. The following topics were studied in detail: (i) the general synoptic weather situations, including the mesoscale flow conditions, (ii) local meteorological conditions and (iii) lo- cal flow conditions. The latter were investigated by means of statistical analyses using best-available quasi-inert trac- ers, SF6 tracer experiments in the experiment area, and re- gional modelling. This study represents the first applica- tion of comprehensive analyses using statistical measures such as the coefficient of divergence (COD) and the cross- correlation in the context of a Lagrangian-type hill cap cloud experiment. This comprehensive examination of local flow connectivity yielded a total of 14 full-cloud events (FCEs), which are defined as periods during which all connected flow and cloud criteria for a suitable Lagrangian-type ex- periment were fulfilled, and 15 non-cloud events (NCEs), which are defined as periods with connected flow but no cloud at the summit site, and which can be used as refer- ence cases. The overall evaluation of the identified FCEs provides the basis for subsequent investigations of the mea- sured chemical and physical data during HCCT-2010 (see http://www.atmos-chem-phys.net/special_issue287.html). Results obtained from the statistical flow analyses and regional-scale modelling performed in this study indicate the existence of a strong link between the three measurement sites during the FCEs and NCEs, particularly under condi- tions of constant southwesterly flow, high wind speeds and slightly stable stratification. COD analyses performed using continuous measurements of ozone and particle (49nm di- ameter size bin) concentrations at the three sites revealed, particularly for COD value

    Stages in Christology in the Synoptic Gospels

    No full text

    Splenectomy for non-Hodgkin\u27s lymphoma.

    No full text
    Splenomegaly is a common occurrence in the course of non-Hodgkin\u27s lymphoma (NHL), sometimes leading to development of bulk symptoms or cytopenias. Splenomegaly may also be the primary manifestation of NHL. We reviewed our experience with diagnostic and therapeutic splenectomy for NHL over the past 3 years. In July of 1991, a prospective database had been established to evaluate elective splenectomy for hematologic disease; of 58 patients, 12 had NHL. Splenectomy was performed for diagnostic purposes, correction of cytopenias, and relief of bulk symptoms. Most patients had more than one indication for splenectomy. Operative hemorrhage requiring transfusion was seen only in patients with massive splenomegaly (\u3e 1,500 g). Median postoperative hospital stay was 4 days. There was no operative mortality or major morbidity. Minor morbidity was seen in 17% of patients. A favorable hematologic response was seen in 80% of cytopenias at the 3-month postoperative interval. Splenectomy is safe and effective in appropriately selected patients with NHL

    Electrification of Heavy-Duty Construction Vehicles

    No full text

    Photoenhanced ozone loss on solid pyrene films

    No full text
    Styler, Sarah A. Brigante, Marcello D'Anna, Barbara George, Christian Donaldson, D. J.This work presents the results of two complementary studies of the heterogeneous reaction of gas-phase ozone with solid pyrene films. In the first study, ozone uptake by the pyrene film was determined using a coated-wall flow tube system. In the second, pyrene loss within the film upon exposure to ozone was monitored using a laser-induced fluorescence technique. The dependence of the reactive loss rate on ozone concentration observed in both methods suggests that the reaction proceeds via a Langmuir-Hinshelwood-type surface mechanism. At a mixing ratio of 50 ppb, the steady-state reactive uptake coefficient of ozone by pyrene films increased from 5.0 x 10(-6) in the dark to 3.7 x 10(-5) upon exposure to near-UV radiation (300-420 nm). The uptake coefficient increased linearly as a function of UV-A spectral irradiance and decreased markedly with increasing relative humidity. The loss of surface pyrene upon exposure to ozone also displayed a light enhancement: analysis of Langmuir-Hinshelwood plots for the light and dark reactions revealed a small increase in the two-dimensional reaction rate in the presence of light (lambda 愦灭;gt;= 295 nm). This modest enhancement, however, was less significant than the corresponding enhancement in the loss of gas-phase ozone. In order to explain these observations, we present an integrated mechanism whereby the light-enhanced ozone uptake arises from the reaction of ozone with O-2((1)Sigma(+)(g)) formed via energy transfer from excited-state pyrene and the enhanced pyrene loss occurs via the formation of a charge-transfer complex between excited-state pyrene and adsorbed ozone. The disparity between surface-and gas-phase results underscores the important role that multifaceted strategies can play in elucidating the mechanisms of heterogeneous atmospheric reactions
    corecore