122 research outputs found

    Strain-dependent solid surface stress and the stiffness of soft contacts

    Full text link
    Surface stresses have recently emerged as a key player in the mechanics of highly compliant solids. The classic theories of contact mechanics describe adhesion with a compliant substrate as a competition between surface energies driving deformation to establish contact and bulk elasticity resisting this. However, it has recently been shown that surface stresses provide an additional restoring force that can compete with and even dominate over elasticity in highly compliant materials, especially when length scales are small compared to the ratio of the surface stress to the elastic modulus, ÎĄ/E\Upsilon/E. Here, we investigate experimentally the contribution of surface stresses to the force of adhesion. We find that the elastic and capillary contributions to the adhesive force are of similar magnitude, and that both are required to account for measured adhesive forces between rigid silica spheres and compliant, silicone gels. Notably, the strain-dependence of the solid surface stress contributes significantly to the stiffness of soft solid contacts.Comment: 6 pages, 3 figure

    Ice-lens formation and geometrical supercooling in soils and other colloidal materials

    Full text link
    We present a new, physically-intuitive model of ice-lens formation and growth during the freezing of soils and other dense, particulate suspensions. Motivated by experimental evidence, we consider the growth of an ice-filled crack in a freezing soil. At low temperatures, ice in the crack exerts large pressures on the crack walls that will eventually cause the crack to split open. We show that the crack will then propagate across the soil to form a new lens. The process is controlled by two factors: the cohesion of the soil, and the geometrical supercooling of the water in the soil; a new concept introduced to measure the energy available to form a new ice lens. When the supercooling exceeds a critical amount (proportional to the cohesive strength of the soil) a new ice lens forms. This condition for ice-lens formation and growth does not appeal to any ad hoc, empirical assumptions, and explains how periodic ice lenses can form with or without the presence of a frozen fringe. The proposed mechanism is in good agreement with experiments, in particular explaining ice-lens pattern formation, and surges in heave rate associated with the growth of new lenses. Importantly for systems with no frozen fringe, ice-lens formation and frost heave can be predicted given only the unfrozen properties of the soil. We use our theory to estimate ice-lens growth temperatures obtaining quantitative agreement with the limited experimental data that is currently available. Finally we suggest experiments that might be performed in order to verify this theory in more detail. The theory is generalizable to complex natural-soil scenarios, and should therefore be useful in the prediction of macroscopic frost heave rates.Comment: Submitted to PR

    Current use of medical eponyms – a need for global uniformity in scientific publications

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although eponyms are widely used in medicine, they arbitrarily alternate between the possessive and nonpossessive forms. As very little is known regarding extent and distribution of this variation, the present study was planned to assess current use of eponymous term taking "Down syndrome" and "Down's syndrome" as an example.</p> <p>Methods</p> <p>This study was carried out in two phases – first phase in 1998 and second phase in 2008. In the first phase, we manually searched the terms "Down syndrome" and "Down's syndrome" in the indexes of 70 medical books, and 46 medical journals. In second phase, we performed PubMed search with both the terms, followed by text-word search for the same.</p> <p>Results</p> <p>In the first phase, there was an overall tilt towards possessive form – 62(53.4%) "Down's syndrome" versus 54(46.6%) "Down syndrome." However, the American publications preferred the nonpossesive form when compared with their European counterpart (40/50 versus 14/66; P < 0.001). In the second phase, PubMed search showed, compared to "Down syndrome," term "Down's syndrome" yielded approximately 5% more articles. The text-word search of both forms between January 1970 and June 2008 showed a gradual shift from "Down's syndrome" to "Down syndrome," and over the last 20 years, the frequency of the former was approximately halved (33.7% versus 16.5%; P < 0.001). The abstracts having possessive form were mostly published from the European countries, while most American publications used nonpossesive form consistently.</p> <p>Conclusion</p> <p>Inconsistency in the use of medical eponyms remains a major problem in literature search. Because of linguistic simplicity and technical advantages, the nonpossessive form should be used uniformly worldwide.</p

    A General Approach for Predicting the Filtration of Soft and Permeable Colloids: The Milk Example

    Get PDF
    Membrane filtration operations (ultra-, microfiltration) are now extensively used for concentrating or separating an ever-growing variety of colloidal dispersions. However, the phenomena that determine the efficiency of these operations are not yet fully understood. This is especially the case when dealing with colloids that are soft, deformable, and permeable. In this paper, we propose a methodology for building a model that is able to predict the performance (flux, concentration profiles) of the filtration of such objects in relation with the operating conditions. This is done by focusing on the case of milk filtration, all experiments being performed with dispersions of milk casein micelles, which are sort of ″natural″ colloidal microgels. Using this example, we develop the general idea that a filtration model can always be built for a given colloidal dispersion as long as this dispersion has been characterized in terms of osmotic pressure Π and hydraulic permeability k. For soft and permeable colloids, the major issue is that the permeability k cannot be assessed in a trivial way like in the case for hard-sphere colloids. To get around this difficulty, we follow two distinct approaches to actually measure k: a direct approach, involving osmotic stress experiments, and a reverse-calculation approach, that consists of estimating k through well-controlled filtration experiments. The resulting filtration model is then validated against experimental measurements obtained from combined milk filtration/SAXS experiments. We also give precise examples of how the model can be used, as well as a brief discussion on the possible universality of the approach presented here

    Drying colloidal systems: laboratory models for a wide range of applications

    Get PDF
    The drying of complex fluids provides a powerful insight into phenomena that take place on time and length scales not normally accessible. An important feature of complex fluids, colloidal dispersions and polymer solutions is their high sensitivity to weak external actions. Thus, the drying of complex fluids involves a large number of physical and chemical processes. The scope of this review is the capacity to tune such systems to reproduce and explore specific properties in a physics laboratory. A wide variety of systems are presented, ranging from functional coatings, food science, cosmetology, medical diagnostics and forensics to geophysics and art
    • …
    corecore