296 research outputs found

    Spreading of Persistent Infections in Heterogeneous Populations

    Full text link
    Up to now, the effects of having heterogeneous networks of contacts have been studied mostly for diseases which are not persistent in time, i.e., for diseases where the infectious period can be considered very small compared to the lifetime of an individual. Moreover, all these previous results have been obtained for closed populations, where the number of individuals does not change during the whole duration of the epidemics. Here, we go one step further and analyze, both analytically and numerically, a radically different kind of diseases: those that are persistent and can last for an individual's lifetime. To be more specific, we particularize to the case of Tuberculosis' (TB) infection dynamics, where the infection remains latent for a period of time before showing up and spreading to other individuals. We introduce an epidemiological model for TB-like persistent infections taking into account the heterogeneity inherent to the population structure. This sort of dynamics introduces new analytical and numerical challenges that we are able to sort out. Our results show that also for persistent diseases the epidemic threshold depends on the ratio of the first two moments of the degree distribution so that it goes to zero in a class of scale-free networks when the system approaches the thermodynamic limit.Comment: 12 pages and 2 figures. Revtex format. Submitted for publication

    Optimal control strategies for tuberculosis treatment: a case study in Angola

    Get PDF
    We apply optimal control theory to a tuberculosis model given by a system of ordinary differential equations. Optimal control strategies are proposed to minimize the cost of interventions. Numerical simulations are given using data from Angola.Comment: This is a preprint of a paper whose final and definite form will appear in the international journal Numerical Algebra, Control and Optimization (NACO). Paper accepted for publication 15-March-201

    Selenium deficiency alters epithelial cell morphology and responses to influenza

    Get PDF
    It is unknown whether nutritional deficiencies affect the morphology and function of structural cells, such as epithelial cells, and modify the susceptibility to viral infections. We developed an in vitro system of differentiated human bronchial epithelial cells (BEC) grown either under selenium adequate (Se+) or selenium deficient (Se-) conditions, to determine whether selenium deficiency impairs host defense responses at the level of the epithelium. Se- BECs had normal SOD activity, but decreased activity of the selenium-dependent enzyme GPX1. Interestingly, catalase activity was also decreased in Se- BECs. Both Se- and Se+ BECs differentiated into a mucociliary epithelium; however, Se- BEC demonstrated increased mucus production and increased Muc5AC mRNA levels. This effect was also seen in Se+ BEC treated with 3-aminotriazole, and inhibitor of catalase activity, suggesting an association between catalase activity and mucus production. Both Se- and Se+ were infected with influenza A/Bangkok/1/79 and examined 24 hours post-infection. Influenza-induced IL-6 production was greater while influenza-induced IP-10 production was lower in Se- BECs. In addition, influenza-induced apoptosis was greater in Se- BEC as compared to the Se+ BECs. These data demonstrate that selenium deficiency has a significant impact on the morphology and influenza-induced host defense responses in human airway epithelial cells

    Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase

    Get PDF
    The enzymatic methylation of inorganic As (iAs) is catalyzed by As(+3 oxidation state)-methyltransferase (AS3MT). AS3MT is expressed in rat liver and in human hepatocytes. However, AS3MT is not expressed in UROtsa, human urothelial cells that do not methylate iAs. Thus, UROtsa cells are an ideal null background in which the role of iAs methylation in modulation of toxic and cancer-promoting effects of this metalloid can be examined. A retroviral gene delivery system was used in this study to create a clonal UROtsa cell line (UROtsa/F35) that expresses rat AS3MT. Here, we characterize the metabolism and cytotoxicity of arsenite (iAsIII) and methylated trivalent arsenicals in parental cells and clonal cells expressing AS3MT. In contrast to parental cells, UROtsa/F35 cells effectively methylated iAsIII, yielding methylarsenic (MAs) and dimethylarsenic (DMAs) containing either AsIII or AsV. When exposed to MAsIII, UROtsa/F35 cells produced DMAsIII and DMAsV. MAsIII and DMAsIII were more cytotoxic than iAsIII in UROtsa and UROtsa/F35 cells. The greater cytotoxicity of MAsIII or DMAsIII than of iAsIII was associated with greater cellular uptake and retention of each methylated trivalent arsenical. Notably, UROtsa/F35 cells were more sensitive than parental cells to the cytotoxic effects of iAsIII but were more resistant to cytotoxicity of MAsIII. The increased sensitivity of UROtsa/F35 cells to iAsIII was associated with inhibition of DMAs production and intracellular accumulation of MAs. The resistance of UROtsa/F35 cells to moderate concentrations of MAsIII was linked to its rapid conversion to DMAs and efflux of DMAs. However, concentrations of MAsIII that inhibited DMAs production by UROtsa/F35 cells were equally toxic for parental and clonal cell lines. Thus, the production and accumulation of MAsIII is a key factor contributing to the toxicity of acute iAs exposures in methylating cells

    Gut Microbiome Phenotypes Driven by Host Genetics Affect Arsenic Metabolism

    Get PDF
    Large individual differences in susceptibility to arsenic-induced diseases are well-documented and frequently associated with different patterns of arsenic metabolism. In this context, the role of the gut microbiome in directly metabolizing arsenic and triggering systemic responses in diverse organs raises the possibility that gut microbiome phenotypes affect the spectrum of metabolized arsenic species. However, it remains unclear how host genetics and the gut microbiome interact to affect the biotransformation of arsenic. Using an integrated approach combining 16S rRNA gene sequencing and HPLC-ICP-MS arsenic speciation, we demonstrate that IL-10 gene knockout leads to a significant taxonomic change of the gut microbiome, which in turn substantially affects arsenic metabolism.National Institute of Environmental Health Sciences (P30 ES010126)National Institute of Environmental Health Sciences (NIEHS grant P30 ES002109)University of Georgia. College of Public Health (internal grant)University of Georgia (Faculty Research Grant (FRG)

    Mathematical model insights into arsenic detoxification

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Arsenic in drinking water, a major health hazard to millions of people in South and East Asia and in other parts of the world, is ingested primarily as trivalent inorganic arsenic (iAs), which then undergoes hepatic methylation to methylarsonic acid (MMAs) and a second methylation to dimethylarsinic acid (DMAs). Although MMAs and DMAs are also known to be toxic, DMAs is more easily excreted in the urine and therefore methylation has generally been considered a detoxification pathway. A collaborative modeling project between epidemiologists, biologists, and mathematicians has the purpose of explaining existing data on methylation in human studies in Bangladesh and also testing, by mathematical modeling, effects of nutritional supplements that could increase As methylation.</p> <p>Methods</p> <p>We develop a whole body mathematical model of arsenic metabolism including arsenic absorption, storage, methylation, and excretion. The parameters for arsenic methylation in the liver were taken from the biochemical literature. The transport parameters between compartments are largely unknown, so we adjust them so that the model accurately predicts the urine excretion rates of time for the iAs, MMAs, and DMAs in single dose experiments on human subjects.</p> <p>Results</p> <p>We test the model by showing that, with no changes in parameters, it predicts accurately the time courses of urinary excretion in mutiple dose experiments conducted on human subjects. Our main purpose is to use the model to study and interpret the data on the effects of folate supplementation on arsenic methylation and excretion in clinical trials in Bangladesh. Folate supplementation of folate-deficient individuals resulted in a 14% decrease in arsenicals in the blood. This is confirmed by the model and the model predicts that arsenicals in the liver will decrease by 19% and arsenicals in other body stores by 26% in these same individuals. In addition, the model predicts that arsenic methyltransferase has been upregulated by a factor of two in this population. Finally, we also show that a modification of the model gives excellent fits to the data on arsenic metabolism in human cultured hepatocytes.</p> <p>Conclusions</p> <p>The analysis of the Bangladesh data using the model suggests that folate supplementation may be more effective at reducing whole body arsenic than previously expected. There is almost no data on the upregulation of arsenic methyltransferase in populations chronically exposed to arsenic. Our model predicts upregulation by a factor of two in the Bangladesh population studied. This prediction should be verified since it could have important public health consequences both for treatment strategies and for setting appropriate limits on arsenic in drinking water. Our model has compartments for the binding of arsenicals to proteins inside of cells and we show that these comparments are necessary to obtain good fits to data. Protein-binding of arsenicals should be explored in future biochemical studies.</p

    Tissue dosimetry, metabolism and excretion of pentavalent and trivalent monomethylated arsenic in mice after oral administration

    Get PDF
    Exposure to monomethylarsonic acid (MMA(V)) and monomethylarsonous acid (MMA(III)) can result from their formation as metabolites of inorganic arsenic and by the use of the sodium salts of MMA(V) as herbicides. This study compared the disposition of MMA(V) and MMA(III) in adult female B6C3F1 mice. Mice were gavaged po with MMA(V), either unlabeled or labeled with 14C at two dose levels (0.4 or 40 mg As/kg). Other mice were dosed po with unlabeled MMA(III) at one dose level (0.4 mg As/kg). Mice were housed in metabolism cages for collection of excreta and sacrificed serially over 24 h for collection of tissues. MMA(V)-derived radioactivity was rapidly absorbed, distributed and excreted. By 8 h post-exposure, 80% of both doses of MMA(V) were eliminated in urine and feces. Absorption of MMA(V) was dose dependent; that is, there was less than a 100-fold difference between the two dose levels in the area under the curves for the concentration-time profiles of arsenic in blood and major organs. In addition, urinary excretion of MMA(V)-derived radioactivity in the low dose group was significantly greater (P < 0.05) than in the high dose group. Conversely, fecal excretion of MMA(V)-derived radioactivity was significantly greater (P < 0.05) in the high dose group than in the low dose group. Speciation of arsenic by hydride generation-atomic absorption spectrometry in urine and tissues of mice administered MMA(V) or MMA(III) found that methylation of MMA(V) was limited while the methylation of MMA(III) was extensive. Less than 10% of the dose excreted in urine of MMA(V)-treated mice was in the form of methylated products, whereas it was greater than 90% for MMA(III)-treated mice. In MMA(V)-treated mice, 25% or less of the tissue arsenic was in the form of dimethylarsenic, whereas in MMA(III)-treated mice, 75% or more of the tissue arsenic was in the form of dimethylarsenic. Based on urinary analysis, administered dose of MMA(V) did not affect the level of its metabolites excreted. In the tested range, dose affects the absorption, distribution and route of excretion of MMA(V) but not its metabolism

    Sex-dependent effects of preconception exposure to arsenite on gene transcription in parental germ cells and on transcriptomic profiles and diabetic phenotype of offspring

    Get PDF
    Chronic exposure to inorganic arsenic (iAs) has been linked to diabetic phenotypes in both humans and mice. However, diabetogenic effects of iAs exposure during specific developmental windows have never been systematically studied. We have previously shown that in mice, combined preconception and in utero exposures to iAs resulted in impaired glucose homeostasis in male offspring. The goal of the present study was to determine if preconception exposure alone can contribute to this outcome. We have examined metabolic phenotypes in male and female offspring from dams and sires that were exposed to iAs in drinking water (0 or 200 μg As/L) for 10 weeks prior to mating. The effects of iAs exposure on gene expression profiles in parental germ cells, and pancreatic islets and livers from offspring were assessed using RNA sequencing. We found that iAs exposure significantly altered transcript levels of genes, including diabetes-related genes, in the sperm of sires. Notably, some of the same gene transcripts and the associated pathways were also altered in the liver of the offspring. The exposure had a more subtle effect on gene expression in maternal oocytes and in pancreatic islets of the offspring. In female offspring, the preconception exposure was associated with increased adiposity, but lower blood glucose after fasting and after glucose challenge. HOMA-IR, the indicator of insulin resistance, was also lower. In contrast, the preconception exposure had no effects on blood glucose measures in male offspring. However, males from parents exposed to iAs had higher plasma insulin after glucose challenge and higher insulinogenic index than control offspring, indicating a greater requirement for insulin to maintain glucose homeostasis. Our results suggest that preconception exposure may contribute to the development of diabetic phenotype in male offspring, possibly mediated through germ cell-associated inheritance. Future research can investigate role of epigenetics in this phenomenon. The paradoxical outcomes in female offspring, suggesting a protective effect of the preconception exposure, warrant further investigation

    Arsenicals in maternal and fetal mouse tissues after gestational exposure to arsenite

    Get PDF
    Exposure of pregnant C3H/HeNCR mice to 42.5- or 85-ppm of arsenic as sodium arsenite in drinking water between days 8 and 18 of gestation markedly increases tumor incidence in their offspring. In the work reported here, distribution of inorganic arsenic and its metabolites, methyl arsenic and dimethyl arsenic, were determined in maternal and fetal tissues collected on gestational day 18 of these exposure regimens. Tissues were collected from three females and from associated fetuses exposed to each dosage level. Concentrations of total speciated arsenic (sum of inorganic, methyl, and dimethyl arsenic) were higher in maternal tissues than in placenta and fetal tissues; total speciated arsenic concentration in placenta exceeded those in fetal tissues. Significant dosage-dependent (42.5 ppm versus 85 ppm of arsenite in drinking water) differences were found in total speciated arsenic concentrations in maternal lung (p < 0.01) and liver (p < 0.001). Total speciated arsenic concentrations did not differ significantly between dosage levels for maternal blood or for fetal lung, liver, and blood, or for placenta. Percentages of inorganic, methyl, or dimethyl arsenic in maternal or fetal tissues were not dosage-dependent. Over the range of total speciated arsenic concentrations in most maternal and fetal tissues, dimethyl arsenic was the most abundant arsenical. However, in maternal liver at the highest total speciated arsenic concentration, inorganic arsenic was the most abundant arsenical, suggesting that a high tissue burden of arsenic affected formation or retention of methylated species in this organ. Tissue concentration-dependent processes could affect kinetics of transfer of inorganic arsenic or its metabolites from mother to fetus
    • …
    corecore