88 research outputs found

    Patent infections with soil-transmitted helminths and Schistosoma mansoni are not associated with increased prevalence of antibodies to the Onchocerca volvulus peptide epitopes OvMP-1 and OvMP-23

    Get PDF
    Background: Ov16 serology is considered a reference method for Onchocerca volvulus epidemiological mapping. Given the suboptimal sensitivity of this test and the fact that seroconversion takes more than a year after infection, additional serological tests might be needed to guide onchocerciasis elimination programmes. Recently, two linear epitopes encoded in OvMP-1 and OvMP-23 peptides were introduced as serological markers, but the observed antibody cross-reactivity in samples originating from Onchocerca volvulus non-endemic areas required further investigation. Methods: We evaluated both peptide markers in an O. volvulus hypo-endemic setting in Jimma Town, Ethiopia using peptide ELISA. For all individuals (n = 303), the infection status with soil-transmitted helminths and Schistosoma mansoni was known. Results: We found that 11 (3.6%) individuals were positive for anti-Ov16 IgG4 antibodies, while 34 (11.2%) and 15 (5.0%) individuals were positive for OvMP-1 and OvMP-23, respectively. Out of the 34 OvMP-1 positive samples, 33 were negative on the Ov16 IgG4 ELISA. Similarly, out of the 15 OvMP-23 positive samples, 14 scored negative on this reference method. No difference in seroprevalence for all three markers could be observed between uninfected individuals and individuals infected with different soil-transmitted helminths or S. mansoni. Moreover, the intensity of the response to OvMP-1, OvMP-23 or Ov16 was not significantly stronger in individuals carrying patent STH or S. mansoni infections, nor was there any correlation between the intensities of the responses to the three different antigens. Conclusions: This study demonstrates that a patent infection with either soil-transmitted helminths or S. mansoni does not lead to increased antibody recognition of both OvMP-1 and OvMP23

    Detection of Ascaris lumbricoides infection by ABA-1 coproantigen ELISA

    Get PDF
    Intestinal worms, or soil-transmitted helminths (STHs), affect hundreds of millions of people in all tropical and subtropical regions of the world. The most prevalent STH isAscaris lumbricoides. Through large-scale deworming programs, World Health Organization aims to reduce morbidity, caused by moderate-to-heavy intensity infections, below 2%. In order to monitor these control programs, stool samples are examined microscopically for the presence of worm eggs. This procedure requires well-trained personnel and is known to show variability between different operators interpreting the slides. We have investigated whether ABA-1, one of the excretory-secretory products ofA.lumbricoidescan be used as a coproantigen marker for infection with this parasite. Polyclonal antibodies were generated and a coproantigen ELISA was developed. Using this ELISA, it was found that ABA-1 in stool detectedAscarisinfection with a sensitivity of 91.5% and a specificity of 95.3%. Our results also demonstrate that there is a correlation between ABA-1 levels in stool andA.lumbricoidesDNA detected in stool. Using a threshold of 18.2 ng/g stool the ABA-1 ELISA correctly assigned 68.4% of infected individuals to the moderate-to-heavy intensity infection group, with a specificity of 97.1%. Furthermore, the levels of ABA-1 in stool were shown to rapidly and strongly decrease upon administration of a standard anthelminthic treatment (single oral dose of 400 mg albendazole). In anAscaris suuminfection model in pigs, it was found that ABA-1 remained undetectable until day 28 and was detected at day 42 or 56, concurrent with the appearance of worm eggs in the stool. This report demonstrates that ABA-1 can be considered anAscaris-specific coproantigen marker that can be used to monitor infection intensity. It also opens the path for development of point-of-care immunoassay-based tests to determineA.lumbricoidesinfection in stool at the sample collection site. Author summary Intestinal worms are one of the most common infections in tropical and subtropical parts of the world. The roundwormAscaris lumbricoidesis the most prevalent and efforts are ongoing to use preventive chemotherapy to reduce both prevalence and intensity of this infection. To monitor these programs, stool-based microscopy is currently used. We have investigated the possibility of using ABA-1, an abundantly secreted protein from the worm, as a biomarker in stool of infected individuals. We have developed an ELISA and using this assay determined that ABA-1 as stool biomarker had a sensitivity of 91.5% and a specificity of 95.3% to detect infection withA.lumbricoides. We also showed that ABA-1 in stool rapidly and strongly decreased upon administration of a standard anthelminthic treatment. The main asset of this novel stool biomarker is its potential to be used in of point-of-care immunoassay-based tests to determineA.lumbricoidesinfection in stool at the sample collection site

    The HIV-1 Integrase Mutations Y143C/R Are an Alternative Pathway for Resistance to Raltegravir and Impact the Enzyme Functions

    Get PDF
    Resistance to HIV-1 integrase (IN) inhibitor raltegravir (RAL), is encoded by mutations in the IN region of the pol gene. The emergence of the N155H mutation was replaced by a pattern including the Y143R/C/H mutations in three patients with anti-HIV treatment failure. Cloning analysis of the IN gene showed an independent selection of the mutations at loci 155 and 143. Characterization of the phenotypic evolution showed that the switch from N155H to Y143C/R was linked to an increase in resistance to RAL. Wild-type (WT) IN and IN with mutations Y143C or Y143R were assayed in vitro in 3′end-processing, strand transfer and concerted integration assays. Activities of mutants were moderately impaired for 3′end-processing and severely affected for strand transfer. Concerted integration assay demonstrated a decrease in mutant activities using an uncleaved substrate. With 3′end-processing assay, IC50 were 0.4 µM, 0.9 µM (FC = 2.25) and 1.2 µM (FC = 3) for WT, IN Y143C and IN Y143R, respectively. An FC of 2 was observed only for IN Y143R in the strand transfer assay. In concerted integration, integrases were less sensitive to RAL than in ST or 3′P but mutants were more resistant to RAL than WT

    A Synthetic HIV-1 Subtype C Backbone Generates Comparable PR and RT Resistance Profiles to a Subtype B Backbone in a Recombinant Virus Assay

    Get PDF
    In order to determine phenotypic protease and reverse transcriptase inhibitor-associated resistance in HIV subtype C virus, we have synthetically constructed an HIV-1 subtype C (HIV-1-C) viral backbone for use in a recombinant virus assay. The in silico designed viral genome was divided into 4 fragments, which were chemically synthesized and joined together by conventional subcloning. Subsequently, gag-protease-reverse-transcriptase (GPRT) fragments from 8 HIV-1 subtype C-infected patient samples were RT-PCR-amplified and cloned into the HIV-1-C backbone (deleted for GPRT) using In-Fusion reagents. Recombinant viruses (1 to 5 per patient sample) were produced in MT4-eGFP cells where cyto-pathogenic effect (CPE), p24 and Viral Load (VL) were monitored. The resulting HIV-1-C recombinant virus stocks (RVS) were added to MT4-eGFP cells in the presence of serial dilutions of antiretroviral drugs (PI, NNRTI, NRTI) to determine the fold-change in IC50 compared to the IC50 of wild-type HIV-1 virus. Additionally, viral RNA was extracted from the HIV-1-C RVS and the amplified GPRT products were used to generate recombinant virus in a subtype B backbone. Phenotypic resistance profiles in a subtype B and subtype C backbone were compared. The following observations were made: i) functional, infectious HIV-1 subtype C viruses were generated, confirmed by VL and p24 measurements; ii) their rate of infection was slower than viruses generated in the subtype B backbone; iii) they did not produce clear CPE in MT4 cells; and iv) drug resistance profiles generated in both backbones were very similar, including re-sensitizing effects like M184V on AZT

    HIV-1 Phenotypic Reverse Transcriptase Inhibitor Drug Resistance Test Interpretation Is Not Dependent on the Subtype of the Virus Backbone

    Get PDF
    To date, the majority of HIV-1 phenotypic resistance testing has been performed with subtype B virus backbones (e.g. HXB2). However, the relevance of using this backbone to determine resistance in non-subtype B HIV-1 viruses still needs to be assessed. From 114 HIV-1 subtype C clinical samples (36 ARV-naïve, 78 ARV-exposed), pol amplicons were produced and analyzed for phenotypic resistance using both a subtype B- and C-backbone in which the pol fragment was deleted. Phenotypic resistance was assessed in resulting recombinant virus stocks (RVS) for a series of antiretroviral drugs (ARV's) and expressed as fold change (FC), yielding 1660 FC comparisons. These Antivirogram® derived FC values were categorized as having resistant or sensitive susceptibility based on biological cut-off values (BCOs). The concordance between resistance calls obtained for the same clinical sample but derived from two different backbones (i.e. B and C) accounted for 86.1% (1429/1660) of the FC comparisons. However, when taking the assay variability into account, 95.8% (1590/1660) of the phenotypic data could be considered as being concordant with respect to their resistance call. No difference in the capacity to detect resistance associated with M184V, K103N and V106M mutations was noted between the two backbones. The following was concluded: (i) A high level of concordance was shown between the two backbone phenotypic resistance profiles; (ii) Assay variability is largely responsible for discordant results (i.e. for FC values close to BCO); (iii) Confidence intervals should be given around the BCO's, when assessing resistance in HIV-1 subtype C; (iv) No systematic resistance under- or overcalling of subtype C amplicons in the B-backbone was observed; (v) Virus backbone subtype sequence variability outside the pol region does not contribute to phenotypic FC values. In conclusion the HXB2 virus backbone remains an acceptable vector for phenotyping HIV-1 subtype C pol amplicons

    A comparative analysis of HIV drug resistance interpretation based on short reverse transcriptase sequences versus full sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>As second-line antiretroviral treatment (ART) becomes more accessible in resource-limited settings (RLS), the need for more affordable monitoring tools such as point-of-care viral load assays and simplified genotypic HIV drug resistance (HIVDR) tests increases substantially. The prohibitive expenses of genotypic HIVDR assays could partly be addressed by focusing on a smaller region of the HIV reverse transcriptase gene (RT) that encompasses the majority of HIVDR mutations for people on ART in RLS. In this study, an <it>in silico </it>analysis of 125,329 RT sequences was performed to investigate the effect of submitting short RT sequences (codon 41 to 238) to the commonly used virco<sup>®</sup>TYPE and Stanford genotype interpretation tools.</p> <p>Results</p> <p>Pair-wise comparisons between full-length and short RT sequences were performed. Additionally, a non-inferiority approach with a concordance limit of 95% and two-sided 95% confidence intervals was used to demonstrate concordance between HIVDR calls based on full-length and short RT sequences.</p> <p>The results of this analysis showed that HIVDR interpretations based on full-length versus short RT sequences, using the Stanford algorithms, had concordance significantly above 95%. When using the virco<sup>®</sup>TYPE algorithm, similar concordance was demonstrated (>95%), but some differences were observed for d4T, AZT and TDF, where predictions were affected in more than 5% of the sequences. Most differences in interpretation, however, were due to shifts from fully susceptible to reduced susceptibility (d4T) or from reduced response to minimal response (AZT, TDF) or vice versa, as compared to the predicted full RT sequence. The virco<sup>®</sup>TYPE prediction uses many more mutations outside the RT 41-238 amino acid domain, which significantly contribute to the HIVDR prediction for these 3 antiretroviral agents.</p> <p>Conclusions</p> <p>This study illustrates the acceptability of using a shortened RT sequences (codon 41-238) to obtain reliable genotype interpretations by virco<sup>®</sup>TYPE and Stanford algorithms. Implementation of this simplified protocol could significantly reduce the cost of both resistance testing and ARV treatment monitoring in RLS.</p

    HIV-1 V3 envelope deep sequencing for clinical plasma specimens failing in phenotypic tropism assays

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>HIV-1 infected patients for whom standard gp160 phenotypic tropism testing failed are currently excluded from co-receptor antagonist treatment. To provide patients with maximal treatment options, massively parallel sequencing of the envelope V3 domain, in combination with tropism prediction tools, was evaluated as an alternative tropism determination strategy. Plasma samples from twelve HIV-1 infected individuals with failing phenotyping results were available. The samples were submitted to massive parallel sequencing and to confirmatory recombinant phenotyping using a fraction of the gp120 domain.</p> <p>Results</p> <p>A cut-off for sequence reads interpretation of 5 to10 times the sequencing error rate (0.2%) was implemented. On average, each sample contained 7 different V3 haplotypes. V3 haplotypes were submitted to tropism prediction algorithms, and 4/14 samples returned with presence of a dual/mixed (D/M) tropic virus, respectively at 3%, 10%, 11%, and 95% of the viral quasispecies. V3 tropism prediction was confirmed by gp120 phenotyping, except for two out of 4 D/M predicted viruses (with 3 and 95%) which were phenotypically R5-tropic. In the first case, the result was discordant due to the limit of detection for the phenotyping technology, while in the latter case the prediction algorithms were not computing the viral tropism correctly.</p> <p>Conclusions</p> <p>Although only demonstrated on a limited set of samples, the potential of the combined use of "deep sequencing + prediction algorithms" in cases where routine gp160 phenotype testing cannot be employed was illustrated. While good concordance was observed between gp120 phenotyping and prediction of R5-tropic virus, the results suggest that accurate prediction of X4-tropic virus would require further algorithm development.</p

    2-Methyl-pentanoyl-carnitine (2-MPC) : a urine biomarker for patent Ascaris lumbricoides infection

    Get PDF
    Infections with intestinal worms, such as Ascaris lumbricoides, affect hundreds of millions of people in all tropical and subtropical regions of the world. Through large-scale deworming programs, World Health Organization aims to reduce moderate-to-heavy intensity infections below 1%. Current diagnosis and monitoring of these control programs are solely based on the detection of worm eggs in stool. Here we describe how metabolome analysis was used to identify the A. lumbricoides-specific urine biomarker 2-methyl pentanoyl carnitine (2-MPC). This biomarker was found to be 85.7% accurate in determining infection and 90.5% accurate in determining a moderate-to-heavy infection. Our results also demonstrate that there is a correlation between 2-MPC levels in urine and A. lumbricoides DNA detected in stool. Furthermore, the levels of 2-MPC in urine were shown to rapidly and strongly decrease upon administration of a standard treatment (single oral dose of 400 mg albendazole). In an Ascaris suum infection model in pigs, it was found that, although 2-MPC levels were much lower compared to humans, there was a significant association between urinary 2-MPC levels and both worm counts (p=0.023) and the number of eggs per gram (epg) counts (p<0.001). This report demonstrates that urinary 2-MPC can be considered an A. lumbricoides-specific biomarker that can be used to monitor infection intensity
    corecore