7 research outputs found

    Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants

    Get PDF
    Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy

    Chudley-McCullough Syndrome: A Recognizable Clinical Entity Characterized by Deafness and Typical Brain Malformations.

    No full text
    Chudley-McCullough syndrome, a rare autosomal recessive disorder due to pathogenic variants in the (G-protein signaling modulator 2) gene, is characterized by early-onset sensorineural deafness and a typical combination of brain malformations, including ventriculomegaly, (partial) agenesis of the corpus callosum, cerebellar dysplasia, arachnoid cysts, frontal subcortical heterotopia, and midline polymicrogyria. When hearing loss is managed early, most patients have minor or no impairment of motor and cognitive development, despite the presence of brain malformations. We report 2 cases of Chudley-McCullough syndrome, one presenting with congenital deafness and normal development except for speech delay and one presenting prenatally with ventriculomegaly and an atypical postnatal course characterized by epileptic spasms, deafness, and moderate intellectual disability. These highlight the challenges faced by clinicians when predicting prognosis based on pre- or postnatal imaging of brain malformations. We have also reviewed the phenotype and genotype of previous published cases to better understand Chudley-McCullough syndrome

    LBSL case series and DARS2 variant analysis in early severe forms with unexpected presentations

    No full text
    Abstract Objective: Leukoencephalopathy with brainstem and spinal cord involvement and lactate elevation (LBSL) is regarded a relatively mild leukodystrophy, diagnosed by characteristic long tract abnormalities on MRI and biallelic variants in DARS2, encoding mitochondrial aspartyl-tRNA synthetase (mtAspRS). DARS2 variants in LBSL are almost invariably compound heterozygous; in 95% of cases, 1 is a leaky splice site variant in intron 2. A few severely affected patients, still fulfilling the MRI criteria, have been described. We noticed highly unusual MRI presentations in 15 cases diagnosed by WES. We examined these cases to determine whether they represent consistent novel LBSL phenotypes. Methods: We reviewed clinical features, MRI abnormalities, and gene variants and investigated the variants’ impact on mtAspRS structure and mitochondrial function. Results: We found 2 MRI phenotypes: early severe cerebral hypoplasia/atrophy (9 patients, group 1) and white matter abnormalities without long tract involvement (6 patients, group 2). With antenatal onset, microcephaly, and arrested development, group 1 patients were most severely affected. DARS2 variants were severer than for classic LBSL and severer for group 1 than group 2. All missense variants hit mtAspRS regions involved in tRNAAsp binding, aspartyl-adenosine-59-monophosphate binding, and/or homodimerization. Missense variants expressed in the yeast DARS2 ortholog showed severely affected mitochondrial function. Conclusions: DARS2 variants are associated with highly heterogeneous phenotypes. New MRI presentations are profound cerebral hypoplasia/atrophy and white matter abnormalities without long tract involvement. Our findings have implications for diagnosis and understanding disease mechanisms, pointing at dominant neuronal/axonal involvement in severe cases. In line with this conclusion, activation of biallelic DARS2 null alleles in conditional transgenic mice leads to massive neuronal apoptosis

    Unique cardiac phenotype in ALPK3-related disease: Progression from dilated cardiomyopathy to hypertrophic cardiomyopathy

    No full text
    Introduction: Biallelic truncating variants in ALPK3 have recently been described to cause pediatric cardiomyopathy (CMP). Functional studies have found disorganized intercalated discs and sarcomeres and calcium mishandling in both patients and mutant stemcellderived cardiomyocytes. Objectives: To delineate the clinical and genetic spectrum of ALPK3related disease and study genotypephenotype correlations. Methods: We collected clinical and genetic data on ALPK3related CMP patients, and performed ALPK3 staining in heart and skeletal muscle of 3 individuals carrying biallelic truncating variants. Results: We report biallelic ALPK3 mutations for a total of 18 patients: 9 previously reported cases and 9 novel patients from 6 families. Nine patients had biallelic truncating variants, 7 had a truncating and a missense variant, and 1 had a homozygous missense variant in ALPK3. Nine of 16 liveborn patients showed (biventricular) DCM during neonatal life that transitioned to predominantly HCM with surveillance. Several patients showed extracardiac features, including short stature (8/13), contractures (6/15), severe scoliosis (5/12), cleft palate (CP) or velopharyngeal insufficiency (5/15), and dysmorphic (Noonanlike) facies (8/14). Biopsy of 4 patients showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis <4 years of age, and myofibrillar disarray at adult age. ALPK3 staining confirmed its nuclear expression in heart and skeletal muscle, but no differences were observed between patients and controls. Mutations predominantly cluster in exon 6 and the alphakinase domain. No association between mutation type or location and disease severity was observed. Conclusion: Although it has been previously shown that HCM may progress to DCM, we describe a unique cardiac phenotype of DCM transitioning to predominantly HCM. We extend the ALPK3 phenotype to include CP and contractures, however no genotypephenotype correlation could be established. Alpk3 mice displayed a similar cardiac phenotype, but did not show fibrosis or extracardiac features. Expression of a truncated ALPK3 protein in humans may explain the differences in clinical manifestation between the patients and Alpk3 mice that do not produce ALPK3 protein

    A relatively common homozygous TRAPPC4 splicing variant is associated with an early-infantile neurodegenerative syndrome

    No full text
    Trafficking protein particle (TRAPP) complexes, which include the TRAPPC4 protein, regulate membrane trafficking between lipid organelles in a process termed vesicular tethering. TRAPPC4 was recently implicated in a recessive neurodevelopmental condition in four unrelated families due to a shared c.454+3A>G splice variant. Here, we report 23 patients from 17 independent families with an early-infantile-onset neurodegenerative presentation, where we also identified the homozygous variant hg38:11:119020256 A>G (NM_016146.5:c.454+3A>G) in TRAPPC4 through exome or genome sequencing. No other clinically relevant TRAPPC4 variants were identified among any of over 10,000 patients with neurodevelopmental conditions. We found the carrier frequency of TRAPPC4 c.454+3A>G was 2.4-5.4 per 10,000 healthy individuals. Affected individuals with the homozygous TRAPPC4 c.454+3A>G variant showed profound psychomotor delay, developmental regression, early-onset epilepsy, microcephaly and progressive spastic tetraplegia. Based upon RNA sequencing, the variant resulted in partial exon 3 skipping and generation of an aberrant transcript owing to use of a downstream cryptic splice donor site, predicting a premature stop codon and nonsense mediated decay. These data confirm the pathogenicity of the TRAPPC4 c.454+3A>G variant, and refine the clinical presentation of TRAPPC4-related encephalopathy

    Expanding the clinical and genetic spectrum of ALPK3 variants: Phenotypes identified in pediatric cardiomyopathy patients and adults with heterozygous variants

    Get PDF
    Introduction: Biallelic damaging variants in ALPK3, encoding alpha-protein kinase 3, cause pediatric-onset cardiomyopathy with manifestations that are incompletely defined. Methods and Results: We analyzed clinical manifestations of damaging biallelic ALPK3 variants in 19 pediatric patients, including nine previously published cases. Among these, 11 loss-of-function (LoF) variants, seven compound LoF and deleterious missense variants, and one homozygous deleterious missense variant were identified. Among 18 live-born patients, 8 exhibited neonatal dilated cardiomyopathy (44.4%; 95% CI: 21.5%-69.2%) that subsequently transitioned into ventricular hypertrophy. The majority of patients had extracardiac phenotypes, including contractures, scoliosis, cleft palate, and facial dysmorphisms. We observed no association between variant type or location, disease severity, and/or extracardiac manifestations. Myocardial histopathology showed focal cardiomyocyte hypertrophy, subendocardial fibroelastosis in patients under 4 years of age, and myofibrillar disarray in adults. Rare heterozygous ALPK3 variants were also assessed in adult-onset cardiomyopathy patients. Among 1548 Dutch patients referred for initial genetic analyses, we identified 39 individuals with rare heterozygous ALPK3 variants (2.5%; 95% CI: 1.8%-3.4%), including 26 missense and 10 LoF variants. Among 149 U.S. patients without pathogenic variants in 83 cardiomyopathy-related genes, we identified six missense and nine LoF ALPK3 variants (10.1%; 95% CI: 5.7%-16.1%). LoF ALPK3 variants were increased in comparison to matched controls (Dutch cohort, P = 1.6×10−5; U.S. cohort, P = 2.2×10−13). Conclusion: Biallelic damaging ALPK3 variants cause pediatric cardiomyopathy manifested by DCM transitioning to hypertrophy, often with poor contractile function. Additional extracardiac features occur in most patients, including musculoskeletal abnormalities and cleft palate. Heterozygous LoF ALPK3 variants are enriched in adults with cardiomyopathy and may contribute to their cardiomyopathy. Adults with ALPK3 LoF variants therefore warrant evaluations for cardiomyopathy

    A relatively common homozygous TRAPPC4 splicing variant is associated with an early-infantile neurodegenerative syndrome

    No full text
    Trafficking protein particle (TRAPP) complexes, which include the TRAPPC4 protein, regulate membrane trafficking between lipid organelles in a process termed vesicular tethering. TRAPPC4 was recently implicated in a recessive neurodevelopmental condition in four unrelated families due to a shared c.454+3A&gt;G splice variant. Here, we report 23 patients from 17 independent families with an early-infantile-onset neurodegenerative presentation, where we also identified the homozygous variant hg38:11:119020256 A&gt;G (NM_016146.5:c.454+3A&gt;G) in TRAPPC4 through exome or genome sequencing. No other clinically relevant TRAPPC4 variants were identified among any of over 10,000 patients with neurodevelopmental conditions. We found the carrier frequency of TRAPPC4 c.454+3A&gt;G was 2.4-5.4 per 10,000 healthy individuals. Affected individuals with the homozygous TRAPPC4 c.454+3A&gt;G variant showed profound psychomotor delay, developmental regression, early-onset epilepsy, microcephaly and progressive spastic tetraplegia. Based upon RNA sequencing, the variant resulted in partial exon 3 skipping and generation of an aberrant transcript owing to use of a downstream cryptic splice donor site, predicting a premature stop codon and nonsense mediated decay. These data confirm the pathogenicity of the TRAPPC4 c.454+3A&gt;G variant, and refine the clinical presentation of TRAPPC4-related encephalopathy
    corecore