670 research outputs found

    The acceleration and propagation of solar flare energetic particles

    Get PDF
    Observations and theories of particle acceleration in solar flares are reviewed. The most direct signatures of particle acceleration in flares are gamma rays, X-rays and radio emissions produced by the energetic particles in the solar atmosphere and energetic particles detected in interplanetary space and in the Earth's atmosphere. The implication of these observations are discussed. Stochastic and shock acceleration as well as acceleration in direct electric fields are considered. Interplanetary particle propagation is discussed and an overview of the highlights of both current and promising future research is presented

    Physical Constraints in Grassland Ecosystems

    Get PDF
    Key points 1. Grassland system management must account adequately for biophysical and biochemical processes. 2. Amenity turf, especially sports turf, provides an excellent case study on how biology and physics interact to impact on the functioning of a grass ecosystem. 3. Microorganisms produce hydrophobic compounds that act to decrease water ingress and alter the function of the soil-grass ecosystem

    High-resolution 3D phenotyping of the grapevine root system using X-ray Computed Tomography

    Get PDF
    Plant roots are essential for water and nutrient uptake and contribute to the plants' response to environmental stress factors. As the hidden half of a plant, investigation of root systems is highly challenging, most of available methods are destructive and very labour-intensive. In this proof-of-concept study, a non-invasive X-ray micro computed tomography (X-ray µCT) method was applied to investigate the phenotypic variation of the complex three-dimensional (3D) architecture of grapevine roots as a function of genotype and soil. Woody cuttings of 'Calardis Musqué', 'Villard Blanc' and V3125 ('Schiava Grossa' x 'Riesling') were cultivated in polypropylene columns filled with two different soil types, clay loam and sandy loam, for 6 weeks. Afterwards, the columns were scanned once using the technique of X-ray µCT. The received raw data were analysed for the reconstruction of 3D root system models (3D model), which display a non-destructive visualization of whole, intact root systems with a spatial resolution of 42 µm. The 3D models of all investigated plants (in total 18) were applied to quantify root system characteristics precisely by measuring adventitious root length, lateral root length, total root length, root system surface area, root system volume and root growth angles from the woody cutting relative to a horizontal axis. The results showed that: (i) early root formation and root growth differed between genotypes, especially between 'Calardis Musqué' and 'Villard Blanc'; and (ii) the soil type does influence adventitious root formation of V3125, but had minor effects on 'Calardis Musqué' and 'Villard Blanc'. In conclusion, this innovative, high-resolution method of X-ray µCT is suitable for high resolution phenotyping of root formation, architecture, and rooting characteristics of grapevine woody cuttings in a non-destructive manner, e.g. to investigate root response to drought stress and would provide new insights into phylloxera root infection

    Analysis and packaging of radiochemical solar neutrino data. 1. Bayesian approach

    Full text link
    According to current practice, the results of each run of a radiochemical solar neutrino experiment comprise an estimate of the flux and upper and lower error estimates. These estimates are derived by a maximum-likelihood procedure from the times of decay events in the analysis chamber. This procedure has the following shortcomings: (a) Published results sometimes include negative flux estimates. (b) Even if the flux estimate is non-negative, the probability distribution function implied by the flux and error estimates will extend into negative territory; and (c) The overall flux estimate derived from the results of a sequence of runs may differ substantially from an estimate made by a global analysis of all of the timing data taken together. These defects indicate that the usual packaging of data in radiochemical solar neutrino experiments provides an inadequate summary of the data, which implies a loss of information. This article reviews this problem from a Bayesian perspective, and suggests an alternative scheme for the packaging of radiochemical solar neutrino data, which is we believe free from the above objections.Comment: 8 page

    Diffusion entropy and waiting time statistics of hard x-ray solar flares

    Full text link
    We analyze the waiting time distribution of time distances τ\tau between two nearest-neighbor flares. This analysis is based on the joint use of two distinct techniques. The first is the direct evaluation of the distribution function ψ(τ)\psi(\tau), or of the probability, Ψ(tau)\Psi(tau), that no time distance smaller than a given τ\tau is found. We adopt the paradigm of the inverse power law behavior, and we focus on the determination of the inverse power index μ\mu, without ruling out different asymptotic properties that might be revealed, at larger scales, with the help of richer statistics. The second technique, called Diffusion Entropy (DE) method, rests on the evaluation of the entropy of the diffusion process generated by the time series. The details of the diffusion process depend on three different walking rules, which determine the form and the time duration of the transition to the scaling regime, as well as the scaling parameter δ\delta. With the first two rules the information contained in the time series is transmitted, to a great extent, to the transition, as well as to the scaling regime. The same information is essentially conveyed, by using the third rules, into the scaling regime, which, in fact, emerges very quickly after a fast transition process. We show that the significant information hidden within the time series concerns memory induced by the solar cycle, as well as the power index μ\mu. The scaling parameter δ\delta becomes a simple function of μ\mu, when memory is annihilated. Thus, the three walking rules yield a unique and precise value of μ\mu if the memory is wisely taken under control, or cancelled by shuffling the data. All this makes compelling the conclusion that μ=2.138±0.01\mu = 2.138 \pm 0.01.Comment: 23 pages, 13 figure

    RHESSI images and spectra of two small flares

    Full text link
    We studied the evolution of two small flares (GOES class C2 and C1) that developed in the same active region with different morphological characteristics: one is extended and the other is compact. We analyzed the accuracy and the consistency of different algorithms implemented in RHESSI software to reconstruct the image of the emitting sources, for energies between 3 and 12 keV. We found that all tested algorithms give consistent results for the peak position whil the other parameters can differ at most by a factor 2. Pixon and Forward-fit generally converge to similar results but Pixon is more reliable for reconstructing a complex source. We investigated the spectral characteristics of the two flares during their evolution in the 3--25 keV energy band. We found that a single thermal model of the photon spectrum is inadequate to fit the observations and we needed to add either a non-thermal model or a hot thermal one.The non-thermal and the double thermal fits are comparable. If we assume a non-thermal model, the non-thermal energy is always higher than the thermal one.Only during the very final decay phase a single thermal model fits fairly well the observed spectrum.Comment: 26 pages, 11 figures, accepted by Solar Physic

    Structural characterization of angiotensin I-converting enzyme in complex with a selenium analogue of captopril

    Get PDF
    Human somatic angiotensin I-converting enzyme (ACE), a zinc-dependent dipeptidyl carboxypeptidase, is central to the regulation of the renin–angiotensin aldosterone system. It is a well-known target for combating hypertension and related cardiovascular diseases. In a recent study by Bhuyan and Mugesh [Org. Biomol. Chem. (2011) 9, 1356–1365], it was shown that the selenium analogues of captopril (a well-known clinical inhibitor of ACE) not only inhibit ACE, but also protect against peroxynitrite-mediated nitration of peptides and proteins. Here, we report the crystal structures of human testis ACE (tACE) and a homologue of ACE, known as AnCE, from Drosophila melanogaster in complex with the most promising selenium analogue of captopril (SeCap) determined at 2.4 and 2.35 Å resolution, respectively. The inhibitor binds at the active site of tACE and AnCE in an analogous fashion to that observed for captopril and provide the first examples of a protein–selenolate interaction. These new structures of tACE–SeCap and AnCE–SeCap inhibitor complexes presented here provide important information for further exploration of zinc coordinating selenium-based ACE inhibitor pharmacophores with significant antioxidant activity

    Plasmoid-Induced-Reconnection and Fractal Reconnection

    Get PDF
    As a key to undertanding the basic mechanism for fast reconnection in solar flares, plasmoid-induced-reconnection and fractal reconnection are proposed and examined. We first briefly summarize recent solar observations that give us hints on the role of plasmoid (flux rope) ejections in flare energy release. We then discuss the plasmoid-induced-reconnection model, which is an extention of the classical two-ribbon-flare model which we refer to as the CSHKP model. An essential ingredient of the new model is the formation and ejection of a plasmoid which play an essential role in the storage of magnetic energy (by inhibiting reconnection) and the induction of a strong inflow into reconnection region. Using a simple analytical model, we show that the plasmoid ejection and acceleration are closely coupled with the reconnection process, leading to a nonlinear instability for the whole dynamics that determines the macroscopic reconnection rate uniquely. Next we show that the current sheet tends to have a fractal structure via the following process path: tearing, sheet thinning, Sweet- Parker sheet, secondary tearing, further sheet thinning... These processes occur repeatedly at smaller scales until a microscopic plasma scale (either the ion Larmor radius or the ion inertial length) is reached where anomalous resistivity or collisionless reconnection can occur. The current sheet eventually has a fractal structure with many plasmoids (magnetic islands) of different sizes. When these plasmoids are ejected out of the current sheets, fast reconnection occurs at various different scales in a highly time dependent manner. Finally, a scenario is presented for fast reconnection in the solar corona on the basis of above plasmoid-induced-reconnection in a fractal current sheet.Comment: 9 pages, 11 figures, with using eps.sty; Earth, Planets and Space in press; ps-file is also available at http://stesun8.stelab.nagoya-u.ac.jp/~tanuma/study/shibata2001
    corecore