84 research outputs found
Quantifying physiological influences on otolith microchemistry
Trace element concentrations in fish earstones (âotolithsâ) are widely used to discriminate spatially discrete populations or individuals of marine fish, based on a commonly held assumption that physiological influences on otolith composition are minor, and thus variations in otolith elemental chemistry primarily reflect changes in ambient water chemistry. We carried out a long-term (1-year) experiment, serially sampling seawater, blood plasma and otoliths of mature and immature European plaice (Pleuronectes platessa L.) to test relationships between otolith chemistry and environmental and physiological variables. Seasonal variations in otolith elemental composition did not track seawater concentrations, but instead reflected physiological controls on metal transport and biokinetics, which are likely moderated by ambient temperature. The influence of physiological factors on otolith composition was particularly evident in Sr/Ca ratios, the most widely used elemental marker in applied otolith microchemistry studies. Reproduction also triggered specific variations in otolith and blood plasma metal chemistry, especially Zn/Ca ratios in female fish, which could potentially serve as retrospective spawning indicators. The influence of physiology on the trace metal composition of otoliths may explain the success of microchemical stock discrimination in relatively homogenous marine environments, but could complicate alternative uses for trace element compositions in biominerals of higher organism
Unnatural selection of salmon life histories in a modified riverscape
Altered river flows and fragmented habitats often simplify riverine communities and favor nonânative fishes, but their influence on lifeâhistory expression and survival is less clear. Here, we quantified the expression and ultimate success of diverse salmon emigration behaviors in an anthropogenically altered California river system. We analyzed two decades of Chinook salmon monitoring data to explore the influence of regulated flows on juvenile emigration phenology, abundance, and recruitment. We then followed seven cohorts into adulthood using otolith (ear stone) chemical archives to identify patterns in timeâ and sizeâselective mortality along the migratory corridor. Suppressed winter flow cues were associated with delayed emigration timing, particularly in warm, dry years, which was also when selection against late migrants was the most extreme. Lower, less variable flows were also associated with reduced juvenile and adult production, highlighting the importance of streamflow for cohort success in these southernmost populations. While most juveniles emigrated from the natal stream as fry or smolts, the survivors were dominated by the rare few that left at intermediate sizes and times, coinciding with managed flows released before extreme summer temperatures. The consistent selection against early (small) and late (large) migrants counters prevailing ecological theory that predicts different traits to be favored under varying environmental conditions. Yet, even with this weakened portfolio, maintaining a broad distribution in migration traits still increased adult production and reduced variance. In years exhibiting large fry pulses, even marginal increases in their survival would have significantly boosted recruitment. However, management actions favoring any single phenotype could have negative evolutionary and demographic consequences, potentially reducing adaptability and population stability. To recover fish populations and support viable fisheries in a warming and increasingly unpredictable climate, coordinating flow and habitat management within and among watersheds will be critical to balance trait optimization versus diversification
Restoring freshwater habitat mosaics to promote resilience of vulnerable salmon populations
Phenotypic diversity and abundance drive salmon resilience in the face of increasing environmental variability. But what happens when human activities fundamentally alter the habitat complexity that drives this diversity? And how can we restore habitats to recover both diversity and abundance to support salmon persistence in a warming climate? Here, we looked at the impact of a large watershed restoration effort on the abundance and climate resilience of the three remaining core natural spring-run Chinook Salmon populations in the California Central Valley (Butte, Mill, and Deer Creek). Butte Creek fish, which have floodplain access, had higher overall productivity and faster juvenile growth compared with Mill and Deer Creek populations, and the proportion of floodplain inundation was positively correlated with Butte Creek adult abundance two years later. While Butte Creek exhibited significant increases in abundance post-restoration (~2000%), it generally exhibited lower phenotypic diversity and only a marginal increase in population stability after restoration based on the coefficient of variation (CV). In particular, Butte Creek salmon tended to exhibit larger drops in escapement following dry years (e.g., return years 2010, 2017) compared with Mill and Deer Creek populations, presumably due to limited inundation of its downstream floodplain. The late-migrating juvenile strategy (i.e., yearling), which disproportionately supported Mill and Deer Creek populations during droughts, was uncommon among Butte Creek adults (averaging 60% of returns for Mill and Deer Creek vs. 0.3% for Butte Creek). Increased spring-run stock complex stability was found, post-restoration, when combining the three spring-run populations (i.e., lower aggregate CV). However, among-river pairwise correlations also suggested increased synchronization in population abundances post-restoration, potentially due to increasing frequency and severity of extreme climatic events (e.g., droughts and ocean warming). This study underscores the importance of restoring a connected mosaic of aquatic habitats across modified landscapes, such as cold water refugia and floodplains, to preserve multiple (across-population) life history pathways for increasing salmon stock complex stability and abundance. These landscape-scale process-based habitat restoration efforts are likely to be crucial for the successful long-term recovery of vulnerable species in a rapidly changing climate.publishedVersio
Fishery collapse, recovery, and the cryptic decline of wild salmon on a major California river
Fall-run Chinook salmon (Oncorhynchus tshawytscha) from the SacramentoâSan Joaquin River system form the backbone of Californiaâs salmon fishery and are heavily subsidized through hatchery production. Identifying temporal trends in the relative contribution of hatchery- versus wild-spawned salmon is vital for assessing the status and resiliency of wild salmon populations. Here, we reconstructed the proportion of hatchery fish on natural spawning grounds in the Feather River, a major tributary to the Sacramento River, using strontium isotope (87Sr/86Sr) ratios of otoliths collected during carcass surveys from 2002 to 2010. Our results show that prior to the 2007â2008 salmon stock collapse, 55%â67% of in-river spawners were of hatchery origin; however, hatchery contributions increased drastically (89%) in 2010 following the collapse. Data from a recent hatchery marking program corroborate our results, showing that hatchery fish continued to dominate (âź90%) in 2011â2012. Though the rebound in abundance of salmon in the Feather River suggests recovery of the stock postcollapse, our otolith chemistry data document a persistent decline of wild spawners, likely leading to the erosion of locally adapted Feather River salmon populations
The SEA-UNICORN European COST Action: Advancing Knowledge on Marine Connectivity to Support Transition to a Sustainable Blue Economy
The European COST Action âUnifying Approaches to Marine Connectivity for improved Resource Management for the Seasâ (SEA-UNICORN, 2020â2025) is an international research coordination initiative that unites an interdisciplinary community of scientists and policymakers from over 100 organizations across Europe and beyond. It is establishing a globally harmonized framework to deliver actionable, transdisciplinary knowledge of marine functional connectivity, promoting a sustainable blue economy and ocean conservation. Planning sustainable development in rapidly changing oceans requires a thorough comprehension of marine biodiversity and the processes underpinning the functioning of ecosystems. Connectivity among marine populations and habitats facilitates the persistence and resilience of vulnerable species and ecosystems and controls the spread of invasive species. Constructing effective networks of restoration or conservation areas and promoting sustainable harvesting requires knowledge of connectivity. SEA-UNICORN advances worldwide collaboration by coordinating the collection, sharing, and application of knowledge on species, community, and ecosystem connectivity at sea and at the landâsea interface. It engages scientists from diverse areas and early-career researchers and creates a stronger match between natural and social science and policy needs to better address key environmental issues that challenge the future of our planet
Listening In on the Past: What Can Otolith δ18O Values Really Tell Us about the Environmental History of Fishes?
Oxygen isotope ratios from fish otoliths are used to discriminate marine stocks and reconstruct past climate, assuming that variations in otolith δ18O values closely reflect differences in temperature history of fish when accounting for salinity induced variability in water δ18O. To investigate this, we exploited the environmental and migratory data gathered from a decade using archival tags to study the behaviour of adult plaice (Pleuronectes platessa L.) in the North Sea. Based on the tag-derived monthly distributions of the fish and corresponding temperature and salinity estimates modelled across three consecutive years, we first predicted annual otolith δ18O values for three geographically discrete offshore sub-stocks, using three alternative plausible scenarios for otolith growth. Comparison of predicted vs. measured annual δ18O values demonstrated >96% correct prediction of sub-stock membership, irrespective of the otolith growth scenario. Pronounced inter-stock differences in δ18O values, notably in summer, provide a robust marker for reconstructing broad-scale plaice distribution in the North Sea. However, although largely congruent, measured and predicted annual δ18O values of did not fully match. Small, but consistent, offsets were also observed between individual high-resolution otolith δ18O values measured during tag recording time and corresponding δ18O predictions using concomitant tag-recorded temperatures and location-specific salinity estimates. The nature of the shifts differed among sub-stocks, suggesting specific vital effects linked to variation in physiological response to temperature. Therefore, although otolith δ18O in free-ranging fish largely reflects environmental temperature and salinity, we counsel prudence when interpreting otolith δ18O data for stock discrimination or temperature reconstruction until the mechanisms underpinning otolith δ18O signature acquisition, and associated variation, are clarified
Reading the biomineralized book of life: expanding otolith biogeochemical research and applications for fisheries and ecosystem-based management
Chemical analysis of calcified structures continues to flourish, as analytical and technological advances enable researchers to tap into trace elements and isotopes taken up in otoliths and other archival tissues at ever greater resolution. Increasingly, these tracers are applied to refine age estimation and interpretation, and to chronicle responses to environmental stressors, linking these to ecological, physiological, and life-history processes. Here, we review emerging approaches and innovative research directions in otolith chemistry, as well as in the chemistry of other archival tissues, outlining their value for fisheries and ecosystem-based management, turning the spotlight on areas where such biomarkers can support decision making. We summarise recent milestones and the challenges that lie ahead to using otoliths and archival tissues as biomarkers, grouped into seven, rapidly expanding and application-oriented research areas that apply chemical analysis in a variety of contexts, namely: (1) supporting fish age estimation; (2) evaluating environmental stress, ecophysiology and individual performance; (3) confirming seafood provenance; (4) resolving connectivity and movement pathways; (5) characterising food webs and trophic interactions; (6) reconstructing reproductive life histories; and (7) tracing stock enhancement efforts. Emerging research directions that apply hard part chemistry to combat seafood fraud, quantify past food webs, as well as to reconcile growth, movement, thermal, metabolic, stress and reproductive life-histories provide opportunities to examine how harvesting and global change impact fish health and fisheries productivity. Ultimately, improved appreciation of the many practical benefits of archival tissue chemistry to fisheries and ecosystem-based management will support their increased implementation into routine monitoring.[GRAPHICS]
The SEA-UNICORN European COST Action: Advancing Knowledge on Marine Connectivity to Support Transition to a Sustainable Blue Economy
Publication history: Published online 8 June 2022The European COST Action âUnifying Approaches to Marine Connectivity for improved Resource Management for the Seasâ (SEA-UNICORN, 2020â2025) is an international research coordination initiative that unites an interdisciplinary community of scientists and policymakers from over 100 organizations across Europe and beyond. It is establishing a globally harmonized framework to deliver actionable, transdisciplinary knowledge of marine functional connectivity, promoting a sustainable blue economy and ocean conservation. Planning sustainable development in rapidly changing oceans requires a thorough comprehension of marine biodiversity and the processes underpinning the functioning of ecosystems. Connectivity among marine populations and habitats facilitates the persistence and resilience of vulnerable species and ecosystems and controls the spread of invasive species. Constructing effective networks of restoration or conservation areas and promoting sustainable harvesting requires knowledge of connectivity. SEA-UNICORN advances worldwide collaboration by coordinating the collection, sharing, and application of knowledge on species, community, and ecosystem connectivity at sea and at the landâsea interface. It engages scientists from diverse areas and early-career researchers and creates a stronger match between natural and social science and policy needs to better address key environmental issues that challenge the future of our planet.This publication is based upon work from COST Action
CA19107 SEA-UNICORN, supported by COST (European Cooperation
in Science and Technology, https://www.cost.eu/
Governing Ecological Connectivity in Cross-Scale Dependent Systems.
Ecosystem management and governance of cross-scale dependent systems require integrating knowledge about ecological connectivity in its multiple forms and scales. Although scientists, managers, and policymakers are increasingly recognizing the importance of connectivity, governmental organizations may not be currently equipped to manage ecosystems with strong cross-boundary dependencies. Managing the different aspects of connectivity requires building social connectivity to increase the flow of information, as well as the capacity to coordinate planning, funding, and actions among both formal and informal governance bodies. We use estuaries in particular the San Francisco Estuary, in California, in the United States, as examples of cross-scale dependent systems affected by many intertwined aspects of connectivity. We describe the different types of estuarine connectivity observed in both natural and human-affected states and discuss the human dimensions of restoring beneficial physical and ecological processes. Finally, we provide recommendations for policy, practice, and research on how to restore functional connectivity to estuaries
- âŚ