455 research outputs found
Tropical Geometry of Statistical Models
This paper presents a unified mathematical framework for inference in
graphical models, building on the observation that graphical models are
algebraic varieties.
From this geometric viewpoint, observations generated from a model are
coordinates of a point in the variety, and the sum-product algorithm is an
efficient tool for evaluating specific coordinates. The question addressed here
is how the solutions to various inference problems depend on the model
parameters. The proposed answer is expressed in terms of tropical algebraic
geometry. A key role is played by the Newton polytope of a statistical model.
Our results are applied to the hidden Markov model and to the general Markov
model on a binary tree.Comment: 14 pages, 3 figures. Major revision. Applications now in companion
paper, "Parametric Inference for Biological Sequence Analysis
Computing Tropical Varieties
The tropical variety of a -dimensional prime ideal in a polynomial ring
with complex coefficients is a pure -dimensional polyhedral fan. This fan is
shown to be connected in codimension one. We present algorithmic tools for
computing the tropical variety, and we discuss our implementation of these
tools in the Gr\"obner fan software \texttt{Gfan}. Every ideal is shown to have
a finite tropical basis, and a sharp lower bound is given for the size of a
tropical basis for an ideal of linear forms.Comment: 22 pages, 2 figure
Parametric Inference for Biological Sequence Analysis
One of the major successes in computational biology has been the unification,
using the graphical model formalism, of a multitude of algorithms for
annotating and comparing biological sequences. Graphical models that have been
applied towards these problems include hidden Markov models for annotation,
tree models for phylogenetics, and pair hidden Markov models for alignment. A
single algorithm, the sum-product algorithm, solves many of the inference
problems associated with different statistical models. This paper introduces
the \emph{polytope propagation algorithm} for computing the Newton polytope of
an observation from a graphical model. This algorithm is a geometric version of
the sum-product algorithm and is used to analyze the parametric behavior of
maximum a posteriori inference calculations for graphical models.Comment: 15 pages, 4 figures. See also companion paper "Tropical Geometry of
Statistical Models" (q-bio.QM/0311009
Solving generic nonarchimedean semidefinite programs using stochastic game algorithms
A general issue in computational optimization is to develop combinatorial
algorithms for semidefinite programming. We address this issue when the base
field is nonarchimedean. We provide a solution for a class of semidefinite
feasibility problems given by generic matrices. Our approach is based on
tropical geometry. It relies on tropical spectrahedra, which are defined as the
images by the valuation of nonarchimedean spectrahedra. We establish a
correspondence between generic tropical spectrahedra and zero-sum stochastic
games with perfect information. The latter have been well studied in
algorithmic game theory. This allows us to solve nonarchimedean semidefinite
feasibility problems using algorithms for stochastic games. These algorithms
are of a combinatorial nature and work for large instances.Comment: v1: 25 pages, 4 figures; v2: 27 pages, 4 figures, minor revisions +
benchmarks added; v3: 30 pages, 6 figures, generalization to non-Metzler sign
patterns + some results have been replaced by references to the companion
work arXiv:1610.0674
A nonextremal Camion basis
AbstractWe construct a 3 × 21 matrix A and Camion basis B of A such that B does not correspond to an extreme point of the convex hull of basic solutions of Ax = b for any b ϵ R3. Computer algebra methods played a critical role in finding both the matrix A and an analytic proof that B is not extremal
Rational hypergeometric functions
Multivariate hypergeometric functions associated with toric varieties were introduced by Gel\u27fand, Kapranov and Zelevinsky. Singularities of such functions are discriminants, that is, divisors projectively dual to torus orbit closures. We show that most of these potential denominators never appear in rational hypergeometric functions. We conjecture that the denominator of any rational hypergeometric function is a product of resultants, that is, a product of special discriminants arising from Cayley configurations. This conjecture is proved for toric hypersurfaces and for toric varieties of dimension at most three. Toric residues are applied to show that every toric resultant appears in the denominator of some rational hypergeometric function
- …