
A Nonextremal Camion Basis 

R. G. Bland* 
School of OR & IE 
Cornell University 
Ithaca, New York 14853 

C. W. Ko* 

CWI 
Postbus 4079 
1009 AB Amsterdam, the Netherlands 

and 

B. Sturmfelst 

Department of Mathematics 
Cornell University 
Ithaca, New York 14853 

Submitted by Hichard A. Brualdi 

ABSTRACT 

We construct a .3 X 21 matrix A and Camion basis B of A such that B does not 

correspond to an extreme point of the convex hull of basic solutions of Ax = b for any 

b E IR:3. Computer algebra methods played a critical role in finding both the matrix A 

and an analytic proof that B is not extremal. 
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1. OVERVIEW 

A column basis B of a rank m matrix A E IR"' x 11 is a Camion basis if 
there are nonsingular diagonal matrices D,,, and D,. such that D"' B- 1AD11 is 
nonnegative. Camion bases have many geometric and combinatorial interpre
tations: they correspond to simplicial regions of hyperplane arrangements 
[6; 2, §4.4] and mutations of realizable oriented matroids [5], and arise 
from depth-first-search trees of graphs (see [4]). Camion [3] first showed that 
every real matrix has at least one Camion basis. Shannon [6] proved 
that every matrix A E IR"'x" of rank m has at least n Camion bases, and 
every column of A is contained in at least m of these bases. The notion of 
Camion bases has been generalized to oriented matroids, and the existence 
of Camion bases is a central open problem in oriented matroid theory [2, 
§7.3]. 

An interesting construction for Camion bases involves the basic solutions 
of the linear system Ax= b, where b E IR"' is in general position with 
respect to the columns of A. Given any column basis B, we write x(B, h) E 
IR" for the corresponding basic solution. Let C( A, h) denote the convex hull 
in IR 11 of the set of all basic solutions of A't = b. Bland and Cho [l] showed 
that every vertex of C( A, b) gives rise to a Camion basis of A. 

PROPOSITION 1 [l]. If a basic solution x = x( B, h) of Ax = h is a vertex 
of the convex polytope C( A, b ), then the corresponding basis B is a Camion 
basis of A. 

This raises the natural question whether each Camion basis of a real 
matrix can be obtained in this way. The answer is affirmative in the special 
cases m :;;;;; 2 and 11 - m ,.;; 2 [4, §5.2]. It is the objective of this note to show 
that the answer is negative in general. 

THEOREM 2. Th~re exists a matrix A E IR:3x 21 of rank three and a 
Camion basis B of A such _that, for all b E IR 3 in general position with 
respfct to the columns of A, the basic solution x(B, b) is not a vertex of 
C(A, b). 

The proof of Proposition 1 given in [l] is based on the following lemma, 
whic~ is also used in our proof of Theorem 2. Two vectors x and y being 
co11s1ste11t means that there are no coordinates i and ;· with x y < O < x. y. 

I I } .J" 

LEMMA 3 [l]. If x(B, h) is a vertex of C(A, b), then every column in 
B - I A is consistent with B - I b. 

To derive Proposition 1 from Lemma 3, we first choose a nonsingular 
diagonal matrix D"' such that D,,, B- 1 b is nonnegative. By consistency, each 



A NON EXTREMAL CAMION BASIS 

column of Dm B - 1 A is either nonnegative or nonpositive. and we can choose 

a nonsingular diagonal matrix D,, such that D,11 B - 1AD11 is Hon negative. 

Fix m = 3. A matrix A E Rlx" is in standard jlwm if A = [I, N ], 

where I is the 3 X 3 identity matrix. \Ve assume that the matrix N E 

mi :ix<" - :i) . t. 1 · l . i· I t I . C' . 1 . f' ' L 
lfl'i 1s nonnega 1ve, w uc l nnp ies t m 1s a "a1mon ias1s o •""· et 

W(A) denote the set of all vectors b E IR:i for which x(l, b) = (h,O) is a 

vertex of C( A, h ). This is a semialgebrair sPt (i.e., it is defined b:· pol:11omial 

inequalities), whose structure seems rather complicated in general. 

Our method for fin<ling and verif)ring the example of Theort•m 2. was 

facilitated by numeric and symbolic computation. To gain insight into the 

problem, we generated random nonnegative matrices of rank three of the 

form [I, N]. Random vectors h were tested for extrernality of x( [, h) 11si ng 

MATLAB, a package for matrix comp11tations, and successes. <md failures were 

plotted. We found a 3 X 6 matrix A = [I, N] such that a large open region 

Ll of IR: appeared to contain no vector h for which the Camion basis l of A 

is extremal. Plots of the semialgebraie set W( A) were obtained using the 

computer algebra system MAPLE. The plots were consistc>nt with the empiri

cal observation that \V( A) and Ll appear to he disjoint. This was verified 

analytically; \V( A) excludes Ll. H.eplacing N in A by a row permutation N * 
of N gives an exc:luded region L'.l* that is obtained from Ll hy permuting the 

coordinates. The six L'.l*'s corresponding to all of the row permutations )rnve 

as their union the entire nonnegative orthant. The 3 X 21 exarnplt' of A was 

produced by appending all six row permutations of N to I, resulting in 

exclusion of the entire nonnegative 01thant, impl;ing by Ll'mma 3, that l 

cannot be extremal for A. Details follow in the next section. 

2. THE EXAMPLE 

We consider the matrix A = [I, N], where 

N= 

L t n n rl be ·111 s1·x 3 X 3 IJermutation matrict•s. \\'e claim that the 
e I· "' ... , R ' 

3 X 21 matrix 
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satisfies W( A) = 0. In order to prove this claim (and hence Theorem 2), we 
obsexve 

(*) 

which is easily verified from the definition of the operator W( · ). Let A 
denote the triangle in IR 3 with vertices Ck, i, i ), (1, o. O), and Ct, o, t). 

LEMMA 4. For the matrix A above, the set W( A) is disjoint from the 
triangle A. 

Proof of Theorem 2 from Lemma 4. The set W( A) is invariant under 
scaling by positive real numbers, which i;ieans W( A) is disjoint from the 
triangular cone IR+A. By(*), the set W(A) is disjoint from Uf= 1Il;CIR+A). 
However, this union e51.uals the entire nonnegative cone IR!. Therefore, by 
Lemma 3, the set W( A) is empty, as desired. • 

It remains to prove Lemma 4. Denoting the columns of A by a 1, ... , 

a6 , the Camion bases of A are I= [a1, a 2 , a3 ], B1 = [a 1, a4 , a5 ], B2 = 

[a 1, a4 , a6 ], B3 = [a 2 , a4 , a6 ], B4 = [a 3 , a5 , a 6 ], B5 = [a 1, a 2 , a5 ], and B6 = 
[a 2 , a3 , a4 ]. Let L(b) denote the 3 X 6 matrix consisting of the last three 
rows of the 6 X 6 matrix [x(B 1,b), x(B2 ,b), ... , x(B6 ,b)]. Each entry of 
L(b) is a linear function of b = (b 1, b2 , b3 ). The 3 X 3 minor of L(b) with 
column indices {i < j < k} c {l, ... , 6} is abbreviated Dijk(b ). This is a 

homogeneous polynomial of degree three in b = (b 1, b2 , b 3). 

Suppose the b E W(A). Then there exists a vector f E IR 6 such that 
F · x(l, b) > F · x(B;, b) for i = 1, 2, ... , 6. Since A is in standard form, we 
may suppose f = (0, 0, 0, c 1, c2 , c3). Then the vector c = (c1, c2 , c3 ) satisfies 
c · L(b) < 0. Therefore there can be no nonnegative vector in the null space 
of L(b ), except the zero vector. Cramer's rule implies that among the 
four expressions D12,s(b), -D12ib), D 134(b), and -D234(b) at least one is 
positive and at least one is negative. We claim that this is not possible for any 
point b EA. 

In order to see this, we apply the coordinate projection (u, v, w) ~ 
(u, v), which takes the triangle A bijectively onto the triangle A' in the (u, v) 
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plane having the vertices (k, ~), (1, 0), and (t, 0). The four polynomials in 
question transform into 

D 123(u, v) = :i~3 (45u + 49v - 45)(864u + 47v - 44)(u + v- 1), 

-D124(u,v) = 4~~1 v(45u +49v-45)(-1360u +519v-220), 

D 13iu,v) = :(-1382400u3 -1308560u2v+1452800u 2 

+ 238779uv2 - 143260uv - 70400u + 14619v:3 

- 28039v2 + 13420v), 

- D 234(u, v) = ~~3 (-20u + v)(864u + 47v- 44)(u + u - 1). 

It remains to verify that all four polynomials are nonnegative for all (u, v) 
in the triangle A'. Verification for three of the four is easy, since the 
polynomials are products of linear terms. Verification for the remaining 
polynomial, D 134 , was carried out by trapping the three roots of the univari
ate cubic polynomials D 13i u, a) in intervals outside of the interior of A' for 
each fixed value of a between 0 and ~· The endpoints of each of the families 
of intervals are parametrized by a pair of linear functions of a on which D 134 

has opposite signs over all choices of a between 0 and ~. This completes the 
proof of Lemma 4 and of Theorem 2. 

Additional details and plots of the curves DiJk(u, v) = 0 can be found 
in [4]. 
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