A Nonextremal Camion Basis

R. G. Bland*

School of OR \& IE
Cornell University
Ithaca, New York 14853
C. W. Ko*

CWI
Postbus 4079
1009 AB Amsterdam, the Netherlands
and
B. Sturmfels ${ }^{\dagger}$

Department of Mathematics
Cornell University
Ithaca, New York 14853

Submitted by Richard A. Brualdi

Abstract

We construct a 3×21 matrix A and Camion basis B of A such that B does not correspond to an extreme point of the convex hull of basic solutions of $A x=b$ for any $b \in \mathbb{R}^{3}$. Computer algebra methods played a critical role in finding both the matrix A and an analytic proof that B is not extremal.

[^0]
1. OVERVIEW

A column basis B of a rank m matrix $A \in \mathbb{R}^{m \times n}$ is a Camion basis if there are nonsingular diagonal matrices D_{m} and D_{n} such that $D_{m} B^{-1} A D_{n}$ is nonnegative. Camion bases have many geometric and combinatorial interpretations: they correspond to simplicial regions of hyperplane arrangements [$6 ; 2, \S 4.4]$ and mutations of realizable oriented matroids [5], and arise from depth-first-search trees of graphs (see [4]). Camion [3] first showed that every real matrix has at least one Camion basis. Shannon [6] proved that every matrix $A \in \mathbb{R}^{m \times n}$ of rank m has at least n Camion bases, and every column of A is contained in at least m of these bases. The notion of Camion bases has been generalized to oriented matroids, and the existence of Camion bases is a central open problem in oriented matroid theory [2 , §7.3].

An interesting construction for Camion bases involves the basic solutions of the linear system $A x=b$, where $b \in \mathbb{R}^{m}$ is in general position with respect to the columns of A. Given any column basis B, we write $x(B, b) \in$ \mathbb{R}^{n} for the corresponding basic solution. Let $C(A, b)$ denote the convex hull in \mathbb{R}^{n} of the set of all basic solutions of $A x=b$. Bland and Cho [1] showed that every vertex of $C(A, b)$ gives rise to a Camion basis of A.

Proposition 1 [1]. If a basic solution $x=x(B, b)$ of $A x=b$ is a vertex of the convex polytope $C(A, b)$, then the corresponding basis B is a Camion basis of A.

This raises the natural question whether each Camion basis of a real matrix can be obtained in this way. The answer is affirmative in the special cases $m \leqslant 2$ and $n-m \leqslant 2[4, \S 5.2]$. It is the objective of this note to show that the answer is negative in general.

Theorem 2. There exists a matrix $\tilde{A} \in \mathbb{R}^{3 \times 21}$ of rank three and a Camion basis B of \tilde{A} such that, for all $b \in \mathbb{R}^{3}$ in general position with respect to the columns of \tilde{A}, the basic solution $x(B, b)$ is not a vertex of $C(\tilde{A}, b)$.

The proof of Proposition 1 given in [1] is based on the following lemma, which is also used in our proof of Theorem 2. Two vectors x and y being consistent means that there are no coordinates i and j with $x_{i} y_{i}<0<x_{j} y_{j}$.

Lemma 3 [1]. If $x(B, b)$ is a vertex of $C(A, b)$, then every column in $B^{-1} A$ is consistent with $B^{-1} b$.

To derive Proposition 1 from Lemma 3, we first choose a nonsingular diagonal matrix D_{m} such that $D_{m} B^{-1} b$ is nonnegative. By consistency, each
column of $D_{m} B^{-1} A$ is either nonnegative or nonpositive, and we can choose a nonsingular diagonal matrix D_{n} such that $D_{m} B^{-1} A D_{n}$ is nonnegative.

Fix $m=3$. A matrix $A \in \mathbb{R}^{3 \times n}$ is in standard form if $A=[I, N]$, where I is the 3×3 identity matrix. We assume that the matrix $N \in$ $\mathbb{R}^{3 \times(n-3)}$ is nonnegative, which implies that I is a Camion basis of A. Let $W(A)$ denote the set of all vectors $b \in \mathbb{R}^{3}$ for which $x(I, b)=(b, 0)$ is a vertex of $C(A, b)$. This is a semialgebraic set (i.e., it is defined by polynomial inequalities), whose structure seems rather complicated in general.

Our method for finding and verifying the example of Theorem 2 was facilitated by numeric and symbolic computation. To gain insight into the problem, we generated random nonnegative matrices of rank three of the form $[I, N]$. Random vectors b were tested for extremality of $x(I, b)$ using matlab, a package for matrix computations, and successes and failures were plotted. We found a 3×6 matrix $A=[I, N]$ such that a large open region Δ of \mathbb{R}_{+}^{3} appeared to contain no vector b for which the Camion basis I of A is extremal. Plots of the semialgebraic set $W(A)$ were obtained using the computer algebra system maple. The plots were consistent with the empirical observation that $W(A)$ and Δ appear to be disjoint. This was verified analytically; $W(A)$ excludes Δ. Replacing N in A by a row permutation N^{*} of N gives an excluded region Δ^{*} that is obtained from Δ by permuting the coordinates. The six Δ^{*} 's corresponding to all of the row permutations have as their union the entire nonnegative orthant. The 3×21 example of \tilde{A} was produced by appending all six row permutations of N to I, resulting in exclusion of the entire nonnegative orthant, implying by Lemma 3, that I cannot be extremal for \tilde{A}. Details follow in the next section.

2. THE EXAMPLE

We consider the matrix $A=[I, N]$, where

$$
N=\left[\begin{array}{ccc}
\frac{1}{10001} & \frac{3}{20} & \frac{1}{40} \\
\frac{9}{10} & \frac{4}{5} & \frac{1}{2} \\
\frac{2}{25} & \frac{1}{11010} & \frac{1}{2}
\end{array}\right] .
$$

Let $\Pi_{1}, \Pi_{2}, \ldots, \Pi_{6}$ be all six 3×3 permutation matrices. We claim that the 3×21 matrix

$$
\tilde{A}=\left[I, \Pi_{1} N, \Pi_{2} N, \Pi_{3} N, \Pi_{4} N, \Pi_{5} N, \Pi_{6} N\right]
$$

satisfies $W(\tilde{A})=\varnothing$. In order to prove this claim (and hence Theorem 2), we observe

$$
\begin{align*}
W(\tilde{A}) & \subseteq W\left(\Pi_{1} A\right) \cap W\left(\Pi_{2} A\right) \cap W\left(\Pi_{3} A\right) \\
& \cap W\left(\Pi_{4} A\right) \cap W\left(\Pi_{5} A\right) \cap W\left(\Pi_{6} A\right) \\
& =\Pi_{1} W(A) \cap \Pi_{2} W(A) \cap \Pi_{3} W(A) \\
& \cap \Pi_{4} W(A) \cap \Pi_{5} W(A) \cap \Pi_{6} W(A) \tag{*}
\end{align*}
$$

which is easily verified from the definition of the operator $W(\cdot)$. Let Δ denote the triangle in \mathbb{R}^{3} with vertices $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right),(1,0,0)$, and $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$.

Lemma 4. For the matrix A above, the set $W(A)$ is disjoint from the triangle Δ.

Proof of Theorem 2 from Lemma 4. The set $W(A)$ is invariant under scaling by positive real numbers, which means $W(A)$ is disjoint from the triangular cone $\mathbb{R}_{+} \Delta$. By $(*)$, the set $W(\tilde{A})$ is disjoint from $\cup_{i=1}^{6} \Pi_{i}\left(\mathbb{R}_{+} \Delta\right)$. However, this union equals the entire nonnegative cone \mathbb{R}_{+}^{3}. Therefore, by Lemma 3, the set $W(\tilde{A})$ is empty, as desired.

It remains to prove Lemma 4. Denoting the columns of A by a_{1}, \ldots, a_{6}, the Camion bases of A are $I=\left[a_{1}, a_{2}, a_{3}\right], \quad B_{1}=\left[a_{1}, a_{4}, a_{5}\right], B_{2}=$ $\left[a_{1}, a_{4}, a_{6}\right], B_{3}=\left[a_{2}, a_{4}, a_{6}\right], B_{4}=\left[a_{3}, a_{5}, a_{6}\right], B_{5}=\left[a_{1}, a_{2}, a_{5}\right]$, and $B_{6}=$ [a_{2}, a_{3}, a_{4}]. Let $L(b)$ denote the 3×6 matrix consisting of the last three rows of the 6×6 matrix $\left[x\left(B_{1}, b\right), x\left(B_{2}, b\right), \ldots, x\left(B_{6}, b\right)\right]$. Each entry of $L(b)$ is a linear function of $b=\left(b_{1}, b_{2}, b_{3}\right)$. The 3×3 minor of $L(b)$ with column indices $\{i<j<k\} \subset\{1, \ldots, 6\}$ is abbreviated $D_{i j k}(b)$. This is a homogeneous polynomial of degree three in $b=\left(b_{1}, b_{2}, b_{3}\right)$.

Suppose the $b \in W(A)$. Then there exists a vector $f \in \mathbb{R}^{6}$ such that $f^{t} \cdot x(I, b)>f^{t} \cdot x\left(B_{i}, b\right)$ for $i=1,2, \ldots, 6$. Since A is in standard form, we may suppose $f=\left(0,0,0, c_{1}, c_{2}, c_{3}\right)$. Then the vector $c=\left(c_{1}, c_{2}, c_{3}\right)$ satisfies $c \cdot L(b)<0$. Therefore there can be no nonnegative vector in the null space of $L(b)$, except the zero vector. Cramer's rule implies that among the four expressions $D_{123}(b),-D_{124}(b), D_{134}(b)$, and $-D_{234}(b)$ at least one is positive and at least one is negative. We claim that this is not possible for any point $b \in \Delta$.

In order to see this, we apply the coordinate projection $(u, v, w) \rightarrow$ (u, v), which takes the triangle Δ bijectively onto the triangle Δ^{\prime} in the (u, v)
plane having the vertices $\left(\frac{1}{3}, \frac{1}{3}\right),(1,0)$, and $\left(\frac{1}{2}, 0\right)$. The four polynomials in question transform into

$$
\begin{aligned}
& D_{123}(u, v)= \frac{400}{1353}(45 u+49 v-45)(864 u+47 v-44)(u+v-1), \\
&-D_{124}(u, v)= \frac{20}{4961} v(45 u+49 v-45)(-1360 u+519 v-220), \\
& D_{134}(u, v)=\frac{20}{363}\left(-1382400 u^{3}-1308560 u^{2} v+1452800 u^{2}\right. \\
&+238779 u v^{2}-143260 u v-70400 u+14619 v^{3} \\
&\left.-28039 v^{2}+13420 v\right), \\
&-D_{234}(u, v)=\frac{500}{1353}(-20 u+v)(864 u+47 v-44)(u+v-1) .
\end{aligned}
$$

It remains to verify that all four polynomials are nonnegative for all (u, v) in the triangle Δ^{\prime}. Verification for three of the four is easy, since the polynomials are products of linear terms. Verification for the remaining polynomial, D_{134}, was carried out by trapping the three roots of the univariate cubic polynomials $D_{134}(u, \alpha)$ in intervals outside of the interior of Δ^{\prime} for each fixed value of α between 0 and $\frac{1}{3}$. The endpoints of each of the families of intervals are parametrized by a pair of linear functions of α on which D_{134} has opposite signs over all choices of α between 0 and $\frac{1}{3}$. This completes the proof of Lemma 4 and of Theorem 2.

Additional details and plots of the curves $D_{i j k}(u, v)=0$ can be found in [4].

REFERENCES

1 R. G. Bland and D. H. Cho, Balancing Configurations in \mathbb{R}^{d} by Reflection of Points, Technical Report 733, SORIE, Cornell Univ., 1987.
2 A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and G. Ziegler, Oriented Matroids, Cambridge U.P., 1993.
3 P. Camion, Modules unimodulaires. J. Combin. Theory 4:301-348 (1968).
4 C. W. Ko, Camion Bases and Depth-First-Search Trees, Ph.D. Thesis, Cornell Univ., 1991.
5 J. Roudneff and B. Sturmfels, Simplicial cells in arrangements and mutations of oriented matroids, Geom. Dedicata 27:153-170 (1988).
6 R. W. Shannon, Simplicial cells in arrangements of hyperplanes, Geom. Dedicata 8:179-187 (1979).

[^0]: *Supported in part by AFOSR, NSF, and ONR through NSF grant DMS-8920550 to Cornell University.
 ${ }^{\dagger}$ Supported in part by NSF grant DMS-9002056 and an A. P. Sloan Fellowship.

