One of the major successes in computational biology has been the unification,
using the graphical model formalism, of a multitude of algorithms for
annotating and comparing biological sequences. Graphical models that have been
applied towards these problems include hidden Markov models for annotation,
tree models for phylogenetics, and pair hidden Markov models for alignment. A
single algorithm, the sum-product algorithm, solves many of the inference
problems associated with different statistical models. This paper introduces
the \emph{polytope propagation algorithm} for computing the Newton polytope of
an observation from a graphical model. This algorithm is a geometric version of
the sum-product algorithm and is used to analyze the parametric behavior of
maximum a posteriori inference calculations for graphical models.Comment: 15 pages, 4 figures. See also companion paper "Tropical Geometry of
Statistical Models" (q-bio.QM/0311009