848 research outputs found

    Direct current driven by ac electric field in quantum wells

    Full text link
    It is shown that the excitation of charge carriers by ac electric field with zero average driving leads to a direct electric current in quantum well structures. The current emerges for both linear and circular polarization of the ac electric field and depends on the field polarization and frequency. We present a micoscopic model and an analytical theory of such a nonlinear electron transport in quantum wells with structure inversion asymmetry. In such systems, dc current is induced by ac electric field which has both the in-plane and out-of-plane components. The ac field polarized in the interface plane gives rise to a direct current if the quantum well is subjected to an in-plane static magnetic field.Comment: 6 pages, 3 figure

    Probing Pauli Blocking Factors in Quantum Pumps with Broken Time-Reversal Symmetry

    Full text link
    A recently demonstrated quantum electron pump is discussed within the framework of photon-assisted tunneling. Due to lack of time-reversal symmetry, different results are obtained for the pump current depending on whether or not final-state Pauli blocking factors are used when describing the tunneling process. Whilst in both cases the current depends quadratically on the driving amplitude for moderate pumping, a marked difference is predicted for the temperature dependence. With blocking factors the pump current decreases roughly linearly with temperature until k_B T ~ \hbar\omega is reached, whereas without them it is unaffected by temperature, indicating that the entire Fermi sea participates in the electronic transport.Comment: 4 pages in RevTex4 (beta4), 6 figures; status: to appear in PR

    The LeRC rail accelerators: Test designs and diagnostic techniques

    Get PDF
    The feasibility of using rail accelerators for various in-space and to-space propulsion applications was investigated. A 1 meter, 24 sq mm bore accelerator was designed with the goal of demonstrating projectile velocities of 15 km/sec using a peak current of 200 kA. A second rail accelerator, 1 meter long with a 156.25 sq mm bore, was designed with clear polycarbonate sidewalls to permit visual observation of the plasma arc. A study of available diagnostic techniques and their application to the rail accelerator is presented. Specific topics of discussion include the use of interferometry and spectroscopy to examine the plasma armature as well as the use of optical sensors to measure rail displacement during acceleration. Standard diagnostics such as current and voltage measurements are also discussed

    Maxwell-Drude-Bloch dissipative few-cycle optical solitons

    Get PDF
    We study the propagation of few-cycle pulses in two-component medium consisting of nonlinear amplifying and absorbing two-level centers embedded into a linear and conductive host material. First we present a linear theory of propagation of short pulses in a purely conductive material, and demonstrate the diffusive behavior for the evolution of the low-frequency components of the magnetic field in the case of relatively strong conductivity. Then, numerical simulations carried out in the frame of the full nonlinear theory involving the Maxwell-Drude-Bloch model reveal the stable creation and propagation of few-cycle dissipative solitons under excitation by incident femtosecond optical pulses of relatively high energies. The broadband losses that are introduced by the medium conductivity represent the main stabilization mechanism for the dissipative few-cycle solitons.Comment: 38 pages, 10 figures. submitted to Physical Review

    Orbital mechanism of the circular photogalvanic effect in quantum wells

    Full text link
    It is shown that the free-carrier (Drude) absorption of circularly polarized radiation in quantum well structures leads to an electric current flow. The photocurrent reverses its direction upon switching the light helicity. A pure orbital mechanism of such a circular photogalvanic effect is proposed that is based on interference of different pathways contributing to the light absorption. Calculation shows that the magnitude of the helicity dependent photocurrent in nn-doped quantum well structures corresponds to recent experimental observations.Comment: 5 pages, 2 figures, to be published in JETP Letter

    Opto-Electronic Characterization of Three Dimensional Topological Insulators

    Full text link
    We demonstrate that the terahertz/infrared radiation induced photogalvanic effect, which is sensitive to the surface symmetry and scattering details, can be applied to study the high frequency conductivity of the surface states in (Bi1-xSbx)2Te3 based three dimensional (3D) topological insulators (TI). In particular, measuring the polarization dependence of the photogalvanic current and scanning with a micrometre sized beam spot across the sample, provides access to (i) topographical inhomogeneity's in the electronic properties of the surface states and (ii) the local domain orientation. An important advantage of the proposed method is that it can be applied to study TIs at room temperature and even in materials with a high electron density of bulk carriers.Comment: 6 pages, 4 figure

    Human T-cell lymphotropic virus (HTLV)-associated encephalopathy: an under-recognised cause of acute encephalitis? Case series and literature review

    Get PDF
    Human T-cell lymphotropic virus (HTLV)-1-associated myelopathy (HAM) is well described. Clinical features are predominantly consistent with cord pathology, though imaging and autopsy studies also demonstrate brain inflammation. In general, this is subclinical; however, six cases have previously been reported of encephalopathy in HTLV-1-infected patients, without alternative identified aetiology. We describe three further cases of encephalitis in the UK HAM cohort (n = 142), whereas the annual incidence of acute encephalitis in the general population is 0.07-12.6 per 100,000. Clinical features included reduced consciousness, fever/hypothermia, headaches, seizures, and focal neurology. Investigation showed: raised CSF protein; pleocytosis; raised CSF:peripheral blood mononuclear cell HTLV-1 proviral load ratio; and MRI either normal or showing white matter changes in brain and cord. Four of the six previous case reports of encephalopathy in HTLV-infected patients also had HAM. Histopathology, reported in three, showed perivascular predominantly CD8+ lymphocytic infiltrates in the brain. One had cerebral demyelination, and all had cord demyelination. We have reviewed the existing six cases in the literature, together with our three new cases. In all seven with HAM, the spastic paraparesis deteriorated sub-acutely preceding encephalitis. Eight of the nine were female, and four of the seven treated with steroids improved. We propose that HTLV-associated encephalopathy may be part of the spectrum of HTLV-1-induced central nervous system disease

    Stochastic Energetics of Quantum Transport

    Get PDF
    We examine the stochastic energetics of directed quantum transport due to rectification of non-equilibrium thermal fluctuations. We calculate the quantum efficiency of a ratchet device both in presence and absence of an external load to characterize two quantifiers of efficiency. It has been shown that the quantum current as well as efficiency in absence of load (Stokes efficiency) is higher as compared to classical current and efficiency, respectively, at low temperature. The conventional efficiency of the device in presence of load on the other hand is higher for a classical system in contrast to its classical counterpart. The maximum conventional efficiency being independent of the nature of the bath and the potential remains the same for classical and quantum systems.Comment: To be published in Phys. Rev.

    Photoconductivity and photo-detection response of multiferroic bismuth iron oxide

    Get PDF
    We report visible light detection with in-plane BiFeO3 (BFO) thin films grown on pre-patterned inter-digital electrodes. In-plane configured BFO film displayed photocurrents with a 40:1 photo-to-dark-current ratio and improved photo-sensing ability for >15000 s (4 hrs) under small bias voltage (42V). Nearly sixty percent of the photo-induced charge carriers decay in 1.0 s and follow a double-exponential decay model. At 373 K the effect of light does not significantly increase the dark current, probably due to reduced mobility. Sub-bandgap weak monochromatic light (1 mw/cm2) shows one fold increase in photo-charge carriers.Comment: 18 pages, 7 figure
    corecore