5,351 research outputs found

    Single charge sensing and transport in double quantum dots fabricated from commercially grown Si/SiGe heterostructures

    Full text link
    We perform quantum Hall measurements on three types of commercially available modulation doped Si/SiGe heterostructures to determine their suitability for depletion gate defined quantum dot devices. By adjusting the growth parameters, we are able to achieve electron gases with charge densities 1-3 X 10^{11}/cm^2 and mobilities in excess of 100,000 cm^2/Vs. Double quantum dot devices fabricated on these heterostructures show clear evidence of single charge transitions as measured in dc transport and charge sensing and exhibit electron temperatures of 100 mK in the single quantum dot regime.Comment: Related papers at http://pettagroup.princeton.ed

    Swift J053041.9-665426, a new Be/X-ray binary pulsar in the Large Magellanic Cloud

    Full text link
    We observed the newly discovered X-ray source Swift J053041.9-665426 in the X-ray and optical regime to confirm its proposed nature as a high mass X-ray binary. We obtained XMM-Newton and Swift X-ray data, along with optical observations with the ESO Faint Object Spectrograph, to investigate the spectral and temporal characteristics of Swift J053041.9-665426. The XMM-Newton data show coherent X-ray pulsations with a period of 28.77521(10) s (1 sigma). The X-ray spectrum can be modelled by an absorbed power law with photon index within the range 0.76 to 0.87. The addition of a black body component increases the quality of the fit but also leads to strong dependences of the photon index, black-body temperature and absorption column density. We identified the only optical counterpart within the error circle of XMM-Newton at an angular distance of ~0.8 arcsec, which is 2MASS J05304215-6654303. We performed optical spectroscopy from which we classify the companion as a B0-1.5Ve star. The X-ray pulsations and long-term variability, as well as the properties of the optical counterpart, confirm that Swift J053041.9-665426 is a new Be/X-ray binary pulsar in the Large Magellanic Cloud.Comment: 10 pages, 8 figures, accepted for publication in A&

    On the Nodal Count Statistics for Separable Systems in any Dimension

    Full text link
    We consider the statistics of the number of nodal domains aka nodal counts for eigenfunctions of separable wave equations in arbitrary dimension. We give an explicit expression for the limiting distribution of normalised nodal counts and analyse some of its universal properties. Our results are illustrated by detailed discussion of simple examples and numerical nodal count distributions.Comment: 21 pages, 4 figure

    Discovery of a 168.8 s X-ray pulsar transiting in front of its Be companion star in the Large Magellanic Cloud

    Full text link
    We report the discovery of LXP169, a new high-mass X-ray binary (XRB) in the LMC. The optical counterpart has been identified and appears to exhibit an eclipsing light curve. We performed follow-up observations to clarify the eclipsing nature of the system. Energy spectra and time series were extracted from two XMM-Newton observations to search for pulsations, characterise the spectrum, and measure spectral and timing changes. Long-term X-ray variability was studied using archival ROSAT data. The XMM positions were used to identify the optical counterpart. We obtained UV to NIR photometry to characterise the companion, along with its 4000 d long I-band light curve. We observed LXP169 with Swift at two predicted eclipse times. We found a spin period of 168.8 s that did not change between two XMM observations. The X-ray spectrum, well characterised by a power law, was harder when the source was brighter. The X-ray flux of LXP169 is found to be variable by a factor of at least 10. The counterpart is highly variable on short and long timescales, and its photometry is that of an early-type star with a NIR excess. This classifies the source as a BeXRB pulsar. We observed a transit in the UV, thereby confirming that the companion star itself is eclipsed. We give an ephemeris for the transit of MJD 56203.877 + N*24.329. We propose and discuss the scenario where the matter captured from the companion's equatorial disc creates an extended region of high density around the neutron star (NS), which partially eclipses the companion as the NS transits in front of it. This is most likely the first time the compact object in an XRB is observed to eclipse its companion star. LXP169 would be the first eclipsing BeXRB, and a wealth of important information might be gained from additional observations, such as a measure of the possible Be disc/orbital plane misalignment, or the mass of the NS.Comment: Updated version of arXiv 1302.4665v1, accepted for publication in Astronomy and Astrophysics. 11 pages, 8 figures, 3 table

    Discovery of SXP265, a Be/X-ray binary pulsar in the Wing of the Small Magellanic Cloud

    Full text link
    We identify a new candidate for a Be/X-ray binary in the XMM-Newton slew survey and archival Swift observations that is located in the transition region of the Wing of the Small Magellanic Cloud and the Magellanic Bridge. We investigated and classified this source with follow-up XMM-Newton and optical observations. We model the X-ray spectra and search for periodicities and variability in the X-ray observations and the OGLE I-band light curve. The optical counterpart has been classified spectroscopically, with data obtained at the SAAO 1.9 m telescope, and photometrically, with data obtained using GROND at the MPG 2.2 m telescope. The X-ray spectrum is typical of a high-mass X-ray binary with an accreting neutron star. We detect X-ray pulsations, which reveal a neutron-star spin period of P = (264.516+-0.014) s. The source likely shows a persistent X-ray luminosity of a few 10^35 erg/s and in addition type-I outbursts that indicate an orbital period of ~146 d. A periodicity of 0.867 d, found in the optical light curve, can be explained by non-radial pulsations of the Be star. We identify the optical counterpart and classify it as a B1-2II-IVe star. This confirms SXP 265 as a new Be/X-ray binary pulsar originating in the tidal structure between the Magellanic Clouds.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    Full text link
    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that this system is in general agreement with previous results on Ultra-luminous Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead the galaxy outflow likely arises from an embedded AGN.Comment: Accepted for publication in MNRAS. 13 pages, 11 figures, 4 table

    Imaging density disturbances in water with 41.3 attosecond time resolution

    Full text link
    We show that the momentum flexibility of inelastic x-ray scattering may be exploited to invert its loss function, alowing real time imaging of density disturbances in a medium. We show the disturbance arising from a point source in liquid water, with a resolution of 41.3 attoseconds (4.13×10−174.13 \times 10^{-17} sec) and 1.27 A˚\AA (1.27×10−81.27 \times 10^{-8} cm). This result is used to determine the structure of the electron cloud around a photoexcited molecule in solution, as well as the wake generated in water by a 9 MeV gold ion. We draw an analogy with pump-probe techniques and suggest that energy-loss scattering may be applied more generally to the study of attosecond phenomena.Comment: 4 pages, 4 color figure

    The [CII] 158 um Line Deficit in Ultraluminous Infrared Galaxies Revisited

    Full text link
    We present a study of the [CII] 157.74 um fine-structure line in a sample of 15 ultraluminous infrared (IR) galaxies (L_IR>10^12 Lsun; ULIRGs) using the Long Wavelength Spectrometer (LWS) on the Infrared Space Observatory (ISO). We confirm the observed order of magnitude deficit (compared to normal and starburst galaxies) in the strength of the [CII] line relative to the far-IR dust continuum emission found in our initial report (Luhman et al. 1998), but here with a sample that is twice as large. This result suggests that the deficit is a general phenomenon affecting 4/5 ULIRGs. We present an analysis using observations of generally acknowledged photodissociation region (PDR) tracers ([CII], [OI] 63 and 145 um, and FIR continuum emission), which suggests that a high UV flux G_o incident on a moderate density n PDR could explain the deficit. However, comparisons with other ULIRG observations, including CO (1-0), [CI] (1-0), and 6.2 um polycyclic aromatic hydrocarbon (PAH) emission, suggest that high G_o/n PDRs alone cannot produce a self-consistent solution that is compatible with all of the observations. We propose that non-PDR contributions to the FIR continuum can explain the apparent [CII] deficiency. Here, unusually high G_o and/or n physical conditions in ULIRGs as compared to those in normal and starburst galaxies are not required to explain the [CII] deficit. Dust-bounded photoionization regions, which generate much of the FIR emission but do not contribute significant [CII] emission, offer one possible physical origin for this additional non-PDR component. Such environments may also contribute to the observed suppression of FIR fine-structure emission from ionized gas and PAHs, as well as the warmer FIR colors found in ULIRGs. The implications for observations at higher redshifts are also revisited.Comment: to be published in The Astrophysical Journal, 58 page
    • …
    corecore