651 research outputs found

    Coolant side heat transfer with rotation. Task 3 report: Application of computational fluid dynamics

    Get PDF
    An experimental and analytical program was conducted to investigate heat transfer and pressure losses in rotating multipass passages with configurations and dimensions typical of modern turbine blades. The objective of this program is the development and verification of improved analysis methods that will form the basis for a design system that will produce turbine components with improved durability. As part of this overall program, a technique is developed for computational fluid dynamics. The specific objectives were to: select a baseline CFD computer code, assess the limitations of the baseline code, modify the baseline code for rotational effects, verify the modified code against benchmark experiments in the literature, and to identify shortcomings in the code as revealed by the verification. The Pratt and Whitney 3D-TEACH CFD code was selected as the vehicle for this program. The code was modified to account for rotating internal flows, and these modifications were evaluated for flow characteristics of those expected in the application. Results can make a useful contribution to blade internal cooling

    The Poetics of Passage in Thomas King’s Truth and Bright Water

    Get PDF

    Selection pressure at altitude for genes related to alcohol metabolism: A role for endogenous enteric ethanol synthesis?

    Get PDF
    Reduced tissue availability of oxygen results from ascent to high altitude, where atmospheric pressure, and thus the partial pressure of inspired oxygen, fall (hypobaric hypoxia). In humans, adaptation to such hypoxia is necessary for survival. These functional changes remain incompletely characterized, although metabolic adaptation (rather than simple increases in convective oxygen delivery) appears to play a fundamental role. Those populations that have remained native to high altitude have undergone natural selection for genetic variants associated with advantageous phenotypic traits. Interestingly, a consistent genetic signal has implicated alcohol metabolism in the human adaptive response to hypobaric hypoxia. The reasons for this remain unclear. One possibility is that increased alcohol synthesis occurs through fermentation by gut bacteria in response to enteric hypoxia. There is growing evidence that anaerobes capable of producing ethanol become increasingly prevalent with high-altitude exposure. We hypothesize that: (1) ascent to high altitude renders the gut luminal environment increasingly hypoxic, favouring (2) an increase in the population of enteric fermenting anaerobes, hence (3) the synthesis of alcohol which, through systemic absorption, leads to (4) selection pressure on genes relating to alcohol metabolism. In theory, alcohol could be viewed as a toxic product, leading to selection of gene variants favouring its metabolism. On the contrary, alcohol is a metabolic substrate that might be beneficial. This mechanism could also account for some of the interindividual differences of lowlanders in acclimatization to altitude. Future research should be aimed at determining any shifts to favour ethanol-producing anaerobes after ascent to altitude

    Embedded finite-element solver for computation of brushless permanent-magnet motors

    Get PDF
    This paper describes the theory underlying the formulation of a “minimum set” of finite-element solutions to be used in the design and analysis of saturated brushless permanent-magnet motors. The choice of finite-element solutions is described in terms of key points on the flux–MMF diagram. When the diagram has a regular shape, a huge reduction in finite-element analysis is possible with no loss of accuracy. If the loop is irregular, many more solutions are needed. This paper describes an efficient technique in which a finite-element solver is associated with a classical ddqq-axis circuit model in such a way that the number of finite-element solutions in one electrical half-cycle can be varied between 1 and 360. The finite-element process is used to determine not only the average torque but also the saturated inductances as the rotor rotates

    A Numerical Method to Compute Brain Injury Associated to Concussion

    Get PDF
    This research proposes a new a numerical method to compute brain injury associated with concussion using the Peak Virtual Power method, using the THUMS 4.02 head model. The results indicate that mild and severe concussions could be prevented for lateral collisions and frontal impacts with PVP values lower than 0.928mW and 9.405mW, respectively, and no concussion would happen in the head vertical direction for a PVP value less than 1.184mW. This innovative method proposes a new paradigm to improve helmet designs, assess sports injuries and improve people's wellbeing.Comment: 12 page

    A Numerical Method to Compute Brain Injury Associated to Concussion

    Full text link
    This research proposes a new a numerical method to compute brain injury associated with concussion using the Peak Virtual Power method, using the THUMS 4.02 head model. The results indicate that mild and severe concussions could be prevented for lateral collisions and frontal impacts with PVP values lower than 0.928mW and 9.405mW, respectively, and no concussion would happen in the head vertical direction for a PVP value less than 1.184mW. This innovative method proposes a new paradigm to improve helmet designs, assess sports injuries and improve people's wellbeing.Comment: 12 page

    Study of Flare Assessment in Systemic Lupus Erythematosus Based on Paper Patients

    Get PDF
    © 2017, The Authors. Arthritis Care & Research published by Wiley Periodicals, Inc. on behalf of American College of Rheumatology. Objective: To determine the level of agreement of disease flare severity (distinguishing severe, moderate, and mild flare and persistent disease activity) in a large paper-patient exercise involving 988 individual cases of systemic lupus erythematosus. Methods: A total of 988 individual lupus case histories were assessed by 3 individual physicians. Complete agreement about the degree of flare (or persistent disease activity) was obtained in 451 cases (46%), and these provided the reference standard for the second part of the study. This component used 3 flare activity instruments (the British Isles Lupus Assessment Group [BILAG] 2004, Safety of Estrogens in Lupus Erythematosus National Assessment [SELENA] flare index [SFI] and the revised SELENA flare index [rSFI]). The 451 patient case histories were distributed to 18 pairs of physicians, carefully randomized in a manner designed to ensure a fair case mix and equal distribution of flare according to severity. Results: The 3-physician assessment of flare matched the level of flare using the 3 indices, with 67% for BILAG 2004, 72% for SFI, and 70% for rSFI. The corresponding weighted kappa coefficients for each instrument were 0.82, 0.59, and 0.74, respectively. We undertook a detailed analysis of the discrepant cases and several factors emerged, including a tendency to score moderate flares as severe and persistent activity as flare, especially when the SFI and rSFI instruments were used. Overscoring was also driven by scoring treatment change as flare, even if there were no new or worsening clinical features. Conclusion: Given the complexity of assessing lupus flare, we were encouraged by the overall results reported. However, the problem of capturing lupus flare accurately is not completely solved
    corecore