32 research outputs found

    Clusters in the inner spiral arms of M51: the cluster IMF and the formation history

    Get PDF
    We study the cluster population in a region of 3.2x3.2 kpc^2 in the inner spiral arms of the intergacting galaxy M51, at a distance of about 1 to 3 kpc from the nucleus, based on HST--WFPC2 images taken through five broadband and two narrowband filters. We found 877 cluster candidates and we derived their ages, initial masses and extinctions by comparing their energy distribution with the Starburst99 cluster models. We describe the 3 and 2-dimensional least-square energy fitting method that was used (3DEF, 2DEF). The lack of [OIII] emission in even the youngest clusters with strong H-alpha emission, indicates the absence of the most massive stars and suggests a mass upper limit of about 25 to 30 solar masses. The mass versus age distribution of the clusters shows a drastic decrease in the number of clusters with age, which indicates that cluster disruption is occurring on a timescale of about 10 Myr for low mass clusters. The cluster initial mass function for clusters younger than 10 Myr has an exponent of alpha = 2.0 (+- 0.05) We derived the cluster formation history from clusters with an initial mass larger than 10^4 solar masses. There is no evidence for a peak in the cluster formation rate within a factor two at about 200 to 400 Myr ago, i.e. at the time of the interaction with the companion galaxy NGC 5194.Comment: 15 pages, 15 figures. Accepted for publication by Astronomy and Astrophysic

    Lead source apportionment studies of atmospheric particulate and settled dusts

    No full text
    SIGLEAvailable from British Library Lending Division - LD:D54939/85 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    20th century trends and budget implications of chloroform and related tri- and dihalomethanes inferred from firn air

    Get PDF
    Four trihalomethane (THM; CHCl3, CHBrCl2, CHBr2Cl and CHBr3) and two dihalomethane (DHM; CH2BrCl and CH2Br2) trace gases have been measured in air extracted from polar firn collected at the North Greenland Icecore Project (NGRIP) site. CHCl3 was also measured in firn air from Devon Island (DI), Canada, Dronning Maud Land (DML), Antarctica and Dome Concordia (Dome C), Antarctica. All of these species are believed to be almost entirely of natural origin except for CHCl3 where anthropogenic sources have been reported to contribute ~10% to the global burden. A 2-D atmospheric model was run for CHCl3 using reported emission estimates to produce historical atmospheric trends at the firn sites, which were then input into a firn diffusion model to produce concentration depth profiles that were compared against the measurements. The anthropogenic emissions were modified in order to give the best model fit to the firn data at NGRIP, Dome C and DML. As a result, the contribution of CHCl3 from anthropogenic sources, mainly from pulp and paper manufacture, to the total chloroform budget appears to have been considerably underestimated and was likely to have been close to ~50% at the maximum in atmospheric CHCl3 concentrations around 1990, declining to ~29% at the beginning of the 21st century. We also show that the atmospheric burden of the brominated THM's in the Northern Hemisphere have increased over the 20th century while CH2Br2 has remained constant over time implying that it is entirely of natural origin

    Distributions, long term trends and emissions of four perfluorocarbons in remote parts of the atmosphere

    No full text
    We report the first data set of atmospheric abundances for the following four perfluoroalkanes: n-decafluorobutane (n-C4F10), n-dodecafluoropentane (n-C5F12), n-tetradecafluorohexane (n-C6F14) and nhexadecafluoroheptane (n-C7F16). All four compounds could be detected and quantified in air samples from remote locations in the Southern Hemisphere (at Cape Grim, Tasmania, archived samples dating back to 1978) and the upper troposphere (a passenger aircraft flying from Germany to South Africa). Further observations originate from air samples extracted from deep firn in Greenland and allow trends of atmospheric abundances in the earlier 20th century to be inferred. All four compounds were not present in the atmosphere prior to the 1960s. n-C4F10 and n-C5F12 were also measured in samples collected in the stratosphere with the data indicating that they have no significant sinks in this region. Emissions were inferred from these observations and found to be comparable with emissions from the EDGAR database for n-C6F14. However, emissions of n-C4F10, n-C5F12 and n-C7F16 were found to differ by up to five orders of magnitude between our approach and the database. Although the abundances of the four perfluorocarbons reported here are currently small (less than 0.3 parts per trillion) they have strong Global Warming Potentials several thousand times higher than carbon dioxide (on a 100-yr time horizon) and continue to increase in the atmosphere. We estimate that the sum of their cumulative emissions reached 325 million metric tonnes CO2 equivalent at the end of 2009

    Growth of fluoroform (CHF, HFC-23) in the background atmosphere

    No full text
    There is growing concern over the emission and accumulation of very long-lived fluorinated trace gases in the atmosphere, due to their large global warming potentials (GWPs). Unlike CFCs and other ozone-depleting, chlorinated and brominated chemicals, consumption of these fluorinated compounds is not controlled by the Montreal Protocol or any other international agreement. Of all the known and potential trace 'greenhouse' gases, the two with the highest GWPs are sulfur hexafluoride (SF) and fluoroform (CHF, HFC-23). Whereas several studies have reported the detection and accumulation of SF in the atmosphere, the presence of HFC-23 has remained unreported. We have found that present-day HFC-23 concentrations (c. 11 pptv in late 1995) exceed those of SF by a factor of three. Concentrations have steadily increased in the atmosphere since at least 1978, and are continuing to do so at a present rate of 5% per year. Furthermore, HFC-23 appears to be long-lived in the atmosphere, with a stratospheric lifetime of at least 1000 years, and a modelled tropospheric lifetime of 230 years. In terms of global warming, the cumulative emissions of HFC-23 up to, and including, 1995 are equivalent to 1.6 billion tonnes of CO

    Trends of halon gases in polar firn air: implications for their emission distributions

    Get PDF
    Four halons (H-1301, H-1211, H-2402 and H-1202) have been measured in air samples collected from polar firn from Dome Concordia (Dome C), Antarctica, from Devon Island, Canada and the North Greenland Ice Core Project (NGRIP) site, Greenland. H-2402 and H-1202 are reported for the first time in firn air. The depth profiles show the concentrations of all four halons to be close to zero (i.e. below the detection limit of 0.001 ppt) at the base of the firn thus demonstrating their entirely anthropogenic origin. This is the first evidence of this for H-2402 and H-1202. A 2-D atmospheric model was run with emissions previously derived using archive air measurements from the southern hemisphere mid-latitudes to produce historical trends in atmospheric concentrations at the firn sites, which were then input into a firn diffusion model to produce concentration depth profiles for comparison with the firn measurements. This comparison provides an evaluation of the model-derived atmospheric concentration histories in both hemispheres and thus an indirect evaluation of the emission rates and distributions used in the atmospheric model. Atmospheric concentration trends produced using global emissions previously determined from measurements at Cape Grim are found to be consistent with the firn data from the southern hemisphere. Further emissions of H-1202 in recent years (late 1980s onwards) are likely to have come from latitudes mostly south of 40° N, but emissions prior to that may have come from further north. Emissions of H-1211 may also have shifted to latitudes south of 40° N during the late 1980s. Following comparison of the atmospheric model output with the firn data, modelled atmospheric trends of total organic bromine in the form of halons were derived for both polar regions
    corecore