8 research outputs found

    Temperature regulation responses of ornate box turtles, Terrapene ornata, to heat

    No full text

    In vivo corneal confocal microscopy in keratoconus

    No full text
    PURPOSE: To evaluate the corneas of keratoconic subjects using in vivo confocal microscopy. METHODS: Slit scanning confocal microscopy was used to evaluate the central cornea of one eye of each of 29 keratoconic subjects (mean age 31 +/- 10 years; range 16-49 years). Quantitative aspects of corneal morphology were compared against data from control subjects. RESULTS: Compared with normal control corneas, epithelial wing cell nuclei were larger (p < 0.0001) and epithelial basal cell diameter was larger (p < 0.05) in the keratoconic cornea. Many of the keratoconic corneas investigated showed increased levels of stromal haze and reflectivity, which appeared to be related to the presence of apical scarring on slit lamp examination. A grading scale was devised to quantify the levels of haze. This scale was shown to provide a measure of the level of scarring present. The anterior keratocyte density (AKD) and posterior keratocyte density were 19% lower (p < 0.0001) and 10% lower (p = 0.004) than in controls, respectively. The reduction in AKD was significantly associated with three factors: a history of atopy, eye rubbing and the presence of corneal staining. The mean endothelial cell density in keratoconus was 6% greater than that of normal controls (p = 0.05). The level of endothelial polymegethism was shown not to be different between keratoconic subjects and matched controls (paired t-test: t = 1.82, p = 0.08). CONCLUSIONS: Confocal microscopy demonstrates significant quantitative alterations of corneal morphology in keratoconus
    corecore