104 research outputs found
Cristalización de proteínas en el diseño de fármacos en los últimos 50 años
We live in an era where we expect to be able to visit our doctor and obtain a pill to cure any ailment from which we suffer. Yet, this is still not the case. Many of the current cures are still derived from natural sources although new drugs are increasingly the result of intelligent design. In this process, X-ray protein crystallography now plays a major and effective role in the discovery of new treatments. The developments that have made this possible have evolved during the past fifty years. The methods for crystallizing macromolecules and determining their structures by X-ray crystallography have been automated and the speed for X-ray data acquisition is several orders of magnitude faster. Fifty years ago it took several years to solve a single structure. Now, several protein–ligand complexes can be determined in single day. High-throughput crystallography is considered to be a great asset to the drug discovery process, providing a fast way to tailor drug candidates to their targets by analysing their binding mode in detail. Crystallization remains the main challenge.Vivimos en una época en la que esperamos ir al médico y obtener una pastilla para curar cualquier dolencia que padezcamos; por desgracia, esta expectativa no es real. Aunque muchos de los remedios en uso provienen de fuentes naturales, la mayoría de los nuevos medicamentos son el resultado de la investigación científica. En el proceso de diseño y descubrimiento de fármacos, la cristalografía de proteínas juega un papel central. Los conocimientos que han hecho esto posible han venido evolucionando desde hace cincuenta años aproximadamente. Los métodos de cristalización de macromoléculas y la determinación de sus estructuras a través de la cristalografía de rayos X han sido automatizados y miniaturizados y la velocidad de la adquisición de datos de difracción ha aumentado en varios órdenes de magnitud. Si hace cincuenta años la resolución de una sola estructura podría llevar varios años, actualmente se pueden determinar las estructuras de varios complejos proteína-ligando en un solo día. La cristalografía de alto rendimiento hoy día es un gran recurso en el proceso del descubrimiento de fármacos pues proporciona una manera rápida y precisa de adaptar los fármacos candidatos a las dianas mediante el análisis de su modo de unión. La cristalización sigue siendo el principal desafío
Transthyretin complexes with curcumin and bromo-estradiol: Evaluation of solubilizing multicomponent mixtures
Crystallographic structure determination of protein–ligand complexes of transthyretin (TTR) has been hindered by the low affinity of many compounds that bind to the central cavity of the tetramer. Because crystallization trials are carried out at protein and ligand concentration that approach the millimolar range, low affinity is less of a problem than the poor solubility of many compounds that have been shown to inhibit amyloid fibril formation. To achieve complete occupancy in co-crystallization experiments, the minimal requirement is one ligand for each of the two sites within the TTR tetramer.
Here we present a new strategy for the co-crystallization of TTR using high molecular weight polyethylene glycol instead of high ionic strength precipitants, with ligands solubilized in multicomponent mixtures of compounds. This strategy is applied to the crystallization of TTR complexes with curcumin and 16a-bromo-estradiol. Here we report the crystal structures with these compounds and with the ferulic acid that results from curcumin degradation
Synthesis and structural analysis of halogen substituted fibril formation inhibitors of Human Transthyretin (TTR)
Transthyretin (TTR), a β-sheet-rich tetrameric protein, in equilibrium with an unstable amyloidogenic monomeric form is responsible for extracellular deposition of amyloid fibrils, is associated with the onset of neurodegenerative diseases, such as senile systemic amyloidosis, familial amyloid polyneuropathy and familial amyloid cardiomyopathy. One of the therapeutic strategies is to use small molecules to stabilize the TTR tetramer and thus curb amyloid fibril formation. Here, we report the synthesis, the in vitro evaluation of several halogen substituted 9-fluorenyl- and di-benzophenon-based ligands and their three-dimensional crystallographic analysis in complex with TTR. The synthesized compounds bind TTR and stabilize the tetramer with different potency. Of these compounds, 2c is the best inhibitor. The dual binding mode prevalent in the absence of substitutions on the fluorenyl ring, is disfavored by (2,7-dichloro-fluoren-9-ylideneaminooxy)-acetic acid (1b), (2,7-dibromo-fluoren-9-ylideneaminooxy)-acetic acid (1c) and (E/Z)-((3,4-dichloro-phenyl)-methyleneaminooxy)-acetic acid (2c), all with halogen substitutions
Halogen Bonding Controls Selectivity of FRET Substrate Probes for MMP-9
SummaryMatrix metalloproteinases (MMPs) are a large family of zinc-dependent endoproteases that catalyze cleavage of extracellular matrix and nonmatrix proteins. MMPs play a role in tissue remodeling, and their uncontrolled activity is associated with number of diseases, including tumor metastasis. Thus, there is a need to develop methods to monitor MMP activity, and number of probes has been previously described. The key problem many probes encounter is the issue of selectivity, since 23 human MMPs, despite playing different physiological roles, have structurally similar active sites. Here, we introduce the halogen bonding concept into the probe design and show that the probe containing iodine exhibits an unprecedented selectivity for MMP-9. We provide structure-based explanation for the selectivity, confirming that it is due to formation of the halogen bond that supports catalysis, and we highlight the value of exploring halogen bonding in the context of selective probe design
Discovery of a new selective inhibitor of A Disintegrin And Metalloprotease 10 (ADAM-10) able to reduce the shedding of NKG2D ligands in Hodgkin's lymphoma cell models
Hodgkin's lymphoma (HL) is the most common malignant lymphoma in young adults in the western world. This disease is characterized by an overexpression of ADAM-10 with increased release of NKG2D ligands, involved in an impaired immune response against tumor cells. We designed and synthesized two new ADAM-10 selective inhibitors, 2 and 3 based on previously published ADAM-17 selective inhibitor 1. The most promising compound was the thiazolidine derivative 3, with nanomolar activity for ADAM-10, high selectivity over ADAM-17 and MMPs and good efficacy in reducing the shedding of NKG2D ligands (MIC-B and ULBP3) in three different HL cell lines at non-toxic doses. Molecular modeling studies were used to drive the design and X-ray crystallography studies were carried out to explain the selectivity of 3 for ADAM-10 over MMPs
Copper mediated amyloid-β binding to Transthyretin
Transthyretin (TTR), a homotetrameric protein that transports thyroxine and retinol both in plasma and in cerebrospinal (CSF) fluid provides a natural protective response against Alzheimer’s disease (AD), modulates amyloid-β (Aβ) deposition by direct interaction and co-localizes with Aβ in plaques. TTR levels are lower in the CSF of AD patients. Zn2+, Mn2+and Fe2+transform TTR into a protease able to cleave Aβ. To explain these activities, monomer dissociation or conformational changes have been suggested. Here, we report that when TTR crystals are exposed to copper or iron salts, the tetramer undergoes a significant conformational change that alters the dimer-dimer interface and rearranges residues implicated in TTR’s ability to neutralize Aβ. We also describe the conformational changes in TTR upon the binding of the various metal ions. Furthermore, using bio-layer interferometry (BLI) with immobilized Aβ(1–28), we observe the binding of TTR only in the presence of copper. Such Cu2+-dependent binding suggests a recognition mechanism whereby Cu2+modulates both the TTR conformation, induces a complementary Aβ structure and may participate in the interaction. Cu2+-soaked TTR crystals show a conformation different from that induced by Fe2+, and intriguingly, TTR crystals grown in presence of Aβ(1–28) show different positions for the copper sites from those grown its absence
Different interactions between MT7 toxin and the human muscarinic M1 receptor in its free and N-methylscopolamine-occupied
ABSTRACT Muscarinic MT7 toxin is a highly selective and potent antagonist of the M 1 subtype of muscarinic receptor and acts by binding to an allosteric site. To identify the molecular determinants by which MT7 toxin interacts with this receptor in its free and NMS-occupied states, the effect on toxin potency of alanine substitution was evaluated in equilibrium and kinetic binding experiments as well as in functional assays. The determination of the crystallographic structure of an MT7-derivative (MT7-diiodoTyr51) allowed the selection of candidate residues that are accessible and present on both faces of the three toxin loops. The equilibrium binding data are consistent with negative cooperativity between N-methylscopolamine (NMS) and wild-type or modified MT7 and highlight the critical role of the tip of the central loop of the toxin (Arg34, Met35 Tyr36) in its interaction with the unoccupied receptor. Examination of the potency of wild-type and modified toxins to allosterically decrease the dissociation rate of [ 3 H]NMS allowed the identification of the MT7 residues involved in its interaction with the NMSoccupied receptor. In contrast to the results with the unoccupied receptor, the most important residue for this interaction was Tyr36 in loop II, assisted by Trp10 in loop I and Arg52 in loop III. The critical role of the tips of the MT7 loops was also confirmed in functional experiments. The high specificity of the MT7-M 1 receptor interaction exploits several MT7-specific residues and reveals a different mode of interaction of the toxin with the free and NMS-occupied states of the receptor. Muscarinic neurotoxins, small peptides of 64 to 66 residues derived from the venom of African mambas (Dendroaspis angusticeps and Dendroaspis polylepis), are well known for their ability to interact with different muscarinic receptor subtypes. NMR and X-ray studies of the MT2 toxin have shown that muscarinic toxins have the three-finger fold structure, characteristic of the large superfamily of toxins that act at cholinergic synapses There is a limited understanding of the specificity, selectivity, and mechanism of action of the muscarinic toxins at Article, publication date, and citation information can be found a
Engineering of Three-Finger Fold Toxins Creates Ligands with Original Pharmacological Profiles for Muscarinic and Adrenergic Receptors
Protein engineering approaches are often a combination of rational design and directed evolution using display technologies. Here, we test “loop grafting,” a rational design method, on three-finger fold proteins. These small reticulated proteins have exceptional affinity and specificity for their diverse molecular targets, display protease-resistance, and are highly stable and poorly immunogenic. The wealth of structural knowledge makes them good candidates for protein engineering of new functionality. Our goal is to enhance the efficacy of these mini-proteins by modifying their pharmacological properties in order to extend their use in imaging, diagnostics and therapeutic applications. Using the interaction of three-finger fold toxins with muscarinic and adrenergic receptors as a model, chimeric toxins have been engineered by substituting loops on toxin MT7 by those from toxin MT1. The pharmacological impact of these grafts was examined using binding experiments on muscarinic receptors M1 and M4 and on the α1A-adrenoceptor. Some of the designed chimeric proteins have impressive gain of function on certain receptor subtypes achieving an original selectivity profile with high affinity for muscarinic receptor M1 and α1A-adrenoceptor. Structure-function analysis supported by crystallographic data for MT1 and two chimeras permits a molecular based interpretation of these gains and details the merits of this protein engineering technique. The results obtained shed light on how loop permutation can be used to design new three-finger proteins with original pharmacological profiles
- …