18 research outputs found

    Some remarks on the determination of quantum states by measurements.

    Get PDF
    The problem of state determination of quantum systems by the probability distributions of some observables is considered. In particular, we review a question already asked by W. Pauli, namely, the determination of pure states of spinless particles by the distributions of position and momentum. In this context we give a new example of two wave functions differing by a piecewise constant phase having the same position and momentum distributions. ThePauli problem is investigated also under incorporation of special types of the Hamiltonian. Moreover, in case of spin-1 systems with three-dimensional Hilbert space, it is shown that the probabilities for the values of six suitably chosen spin components determine their state

    Moment operators of the Cartesian margins of the phase space observables

    Full text link
    The theory of operator integrals is used to determine the moment operators of the Cartesian margins of the phase space observables generated by the mixtures of the number states. The moments of the xx-margin are polynomials of the position operator and those of the yy-margin are polynomials of the momentum operator.Comment: 14 page

    Semispectral measures as convolutions and their moment operators

    Full text link
    The moment operators of a semispectral measure having the structure of the convolution of a positive measure and a semispectral measure are studied, with paying attention to the natural domains of these unbounded operators. The results are then applied to conveniently determine the moment operators of the Cartesian margins of the phase space observables.Comment: 7 page

    On the coexistence of position and momentum observables

    Full text link
    We investigate the problem of coexistence of position and momentum observables. We characterize those pairs of position and momentum observables which have a joint observable

    How to determine a quantum state by measurements: The Pauli problem for a particle with arbitrary potential

    Get PDF
    The problem of reconstructing a pure quantum state ¿¿> from measurable quantities is considered for a particle moving in a one-dimensional potential V(x). Suppose that the position probability distribution ¿¿(x,t)¿2 has been measured at time t, and let it have M nodes. It is shown that after measuring the time evolved distribution at a short-time interval ¿t later, ¿¿(x,t+¿t)¿2, the set of wave functions compatible with these distributions is given by a smooth manifold M in Hilbert space. The manifold M is isomorphic to an M-dimensional torus, TM. Finally, M additional expectation values of appropriately chosen nonlocal operators fix the quantum state uniquely. The method used here is the analog of an approach that has been applied successfully to the corresponding problem for a spin system

    Pauli problem for a spin of arbitrary length: A simple method to determine its wave function

    Get PDF
    The problem of determining a pure state vector from measurements is investigated for a quantum spin of arbitrary length. Generically, only a finite number of wave functions is compatible with the intensities of the spin components in two different spatial directions, measured by a Stern-Gerlach apparatus. The remaining ambiguity can be resolved by one additional well-defined measurement. This method combines efficiency with simplicity: only a small number of quantities have to be measured and the experimental setup is elementary. Other approaches to determine state vectors from measurements, also known as the ‘‘Pauli problem,’’ are reviewed for both spin and particle systems

    Quantization and noiseless measurements

    Full text link
    In accordance with the fact that quantum measurements are described in terms of positive operator measures (POMs), we consider certain aspects of a quantization scheme in which a classical variable f:R2→Rf:\R^2\to \R is associated with a unique positive operator measure (POM) EfE^f, which is not necessarily projection valued. The motivation for such a scheme comes from the well-known fact that due to the noise in a quantum measurement, the resulting outcome distribution is given by a POM and cannot, in general, be described in terms of a traditional observable, a selfadjoint operator. Accordingly, we notice that the noiseless measurements are the ones which are determined by a selfadjoint operator. The POM EfE^f in our quantization is defined through its moment operators, which are required to be of the form Γ(fk)\Gamma(f^k), k∈Nk\in \N, with Γ\Gamma a fixed map from classical variables to Hilbert space operators. In particular, we consider the quantization of classical \emph{questions}, that is, functions f:R2→Rf:\R^2\to\R taking only values 0 and 1. We compare two concrete realizations of the map Γ\Gamma in view of their ability to produce noiseless measurements: one being the Weyl map, and the other defined by using phase space probability distributions.Comment: 15 pages, submitted to Journal of Physics

    How many orthonormal bases are needed to distinguish all pure quantum states?

    Get PDF
    We collect some recent results that together provide an almost complete answer to the question stated in the title. For the dimension d=2 the answer is three. For the dimensions d=3 and d>4 the answer is four. For the dimension d=4 the answer is either three or four. Curiously, the exact number in d=4 seems to be an open problem

    Unsharp Quantum Reality

    Get PDF
    The positive operator (valued) measures (POMs) allow one to generalize the notion of observable beyond the traditional one based on projection valued measures (PVMs). Here, we argue that this generalized conception of observable enables a consistent notion of unsharp reality and with it an adequate concept of joint properties. A sharp or unsharp property manifests itself as an element of sharp or unsharp reality by its tendency to become actual or to actualize a specific measurement outcome. This actualization tendency-or potentiality-of a property is quantified by the associated quantum probability. The resulting single-case interpretation of probability as a degree of reality will be explained in detail and its role in addressing the tensions between quantum and classical accounts of the physical world will be elucidated. It will be shown that potentiality can be viewed as a causal agency that evolves in a well-defined way

    Symmetric informationally complete positive operator valued measure and probability representation of quantum mechanics

    Full text link
    Symmetric informationally complete positive operator valued measures (SIC-POVMs) are studied within the framework of the probability representation of quantum mechanics. A SIC-POVM is shown to be a special case of the probability representation. The problem of SIC-POVM existence is formulated in terms of symbols of operators associated with a star-product quantization scheme. We show that SIC-POVMs (if they do exist) must obey general rules of the star product, and, starting from this fact, we derive new relations on SIC-projectors. The case of qubits is considered in detail, in particular, the relation between the SIC probability representation and other probability representations is established, the connection with mutually unbiased bases is discussed, and comments to the Lie algebraic structure of SIC-POVMs are presented.Comment: 22 pages, 1 figure, LaTeX, partially presented at the Workshop "Nonlinearity and Coherence in Classical and Quantum Systems" held at the University "Federico II" in Naples, Italy on December 4, 2009 in honor of Prof. Margarita A. Man'ko in connection with her 70th birthday, minor misprints are corrected in the second versio
    corecore