11 research outputs found

    Trade-offs between risk of predation and starvation in larvae make the shelf break an optimal spawning location for Atlantic Bluefin tuna

    Get PDF
    Atlantic bluefin tuna (ABT) (Thunnus thynnus) travel long distances to spawn in oligotrophic regions of the Gulf of Mexico (GoM) which suggests these regions offer some unique benefit to offspring survival. To better understand how larval survival varies within the GoM a spatially explicit, Lagrangian, individual-based model was developed that simulates dispersal and mortality of ABT early life stages within realistic predator and prey fields during the spawning periods from 1993 to 2012. The model estimates that starvation is the largest cumulative source of mortality associated with an early critical period. However, elevated predation on older larvae is identified as the main factor limiting survival to late postflexion. As a result, first-feeding larvae have higher survival on the shelf where food is abundant, whereas older larvae have higher survival in the open ocean with fewer predators, making the shelf break an optimal spawning area. The modeling framework developed in this study explicitly simulates both physical and biological factors that impact larval survival and hence could be used to support ecosystem based management efforts for ABT under current and future climate conditions.Postprin

    Plankton food webs of the Gulf of Mexico spawning grounds of Atlantic Bluefin tuna

    Get PDF
    We used linear inverse ecosystem modeling techniques to assimilate data from extensive Lagrangian field experiments into a mass-balance constrained food web for the Gulf of Mexico open-ocean ecosystem. This region is highly oligotrophic, yet Atlantic bluefin tuna (ABT) travel long distances from feeding grounds in the North Atlantic to spawn there. Our results show extensive nutrient regeneration fueling primary productivity (mostly by cyanobacteria and other picophytoplankton) in the upper euphotic zone. The food web is dominated by themicrobial loop (>70% of net primary productivity is respired by heterotrophic bacteria and protists that feed on them). By contrast, herbivorous food web pathways from phytoplankton to metazoan zooplankton process <10% of the net primary production in the mixed layer. Nevertheless, ABT larvae feed preferentially on podonid cladocerans and other suspensionfeeding zooplankton, which in turn derive much of their nutrition from nano- and micro-phytoplankton (mixotrophic flagellates, and to a lesser extent, diatoms). This allows ABT larvae to maintain a comparatively low trophic level (∼4.2 for preflexion and postflexion larvae), which increases trophic transfer from phytoplankton to larval fish.ECOLATUNECOlogía trófica comparativa de LArvas de aTUN rojo atlántico (Thunnus thynnus) de las áreas de puesta del Medterraneo-NO y el Golfo de México.S

    The unique ecological role of pyrosomes in the Costa Rica Dome

    No full text
    Pyrosomes are an important but often overlooked component of marine zooplankton communities, with limited existing information regarding their ecological and trophic roles in pelagic ecosystems. We present the first estimates of grazing and trophic interactions of the large tropical pyrosome, Pyrostremma spinosum, in the Eastern Tropical Pacific. While patchy in distribution, Pyrostremma spinosum’s grazing impact was substantial, up to 17.5% of chlorophyll a standing stock d−1 in certain areas. In contrast, these organisms cleared a very small percentage of the abundant picoplankton Synechococcus spp. compared to the bulk zooplankton community. Stable isotopes (13C and 15N) indicated that particulate organic matter (POM) from the surface mixed layer (0–20 m) constitutes the isotopic food-web baseline for most of the zooplankton community, and zooplankton trophic interactions were size structured in some areas. Pyrosomes, doliolids, and appendicularians, along with the smallest size class of net-collected zooplankton, had isotopic values closest to pure herbivory, while intermediate size classes, copepods, and salps showed substantial omnivory/carnivory. Euphausiids, chaetognaths, and > 2 mm zooplankton were the main carnivorous zooplankton in the plankton food web. Stable isotopes indicated that Pyrostremma spinosum is trophically distinct from the rest of the zooplankton community, grazing just below the mixed layer (20–40 m), as opposed to feeding on surface POM. Pyrosomes represent an additional, distinct pathway for material transfer up the plankton food web, by directly consuming POM sources not substantially grazed upon by the rest of the mesozooplankton community

    Diet and prey selection in developing larvae of Atlantic bluefin tuna (Thunnus thynnus) in spawning grounds of the Gulf of Mexico.

    No full text
    Bluefin tuna spawn in restricted areas of subtropical oligotrophic seas. Here, we investigate the zooplankton prey and feeding selectivity of early larval stages of Atlantic bluefin tuna (ABT, Thunnus thynnus) in larval rearing habitat of the Gulf of Mexico. Larvae and zooplankton were collected during two multi-day Lagrangian experiments during peak spawning in May 2017 and 2018. Larvae were categorized by flexion stage and standard length. We identified, enumerated and sized zooplankton from larval gut contents and in the ambient community. Ciliates were quantitatively important (up to 9%) in carbon-based diets of early larvae. As larvae grew, diet composition and prey selection shifted from small copepod nauplii and calanoid copepodites to larger podonid cladocerans, which accounted for up to 70% of ingested carbon. Even when cladoceran abundances were <0.2 m−3, they comprised 23% of postflexion stage diet. Feeding behaviors of larvae at different development stages were more specialized, and prey selection narrowed to appendicularians and primarily cladocerans when these taxa were more abundant. Our findings suggest that ABT larvae have the capacity to switch from passive selection, regulated by physical factors, to active selection of presumably energetically optimal prey.Postprin

    Using Lagrangian‐Based Process Studies to Test Satellite Algorithms of Vertical Carbon Flux in the Eastern North Pacific Ocean

    No full text
    The biological carbon pump is responsible for the transport of 5–20 Pg C yr21 from the surface into the deep ocean but its variability is poorly understood due to an incomplete mechanistic understanding of the complex underlying planktonic processes. In fact, algorithms designed to estimate carbon export from satellite products incorporate fundamentally different assumptions about the relationships between plankton biomass, productivity, and export efficiency. To test the alternate formulations of export efficiency in remotesensing algorithms formulated by Dunne et al. (2005), Laws et al. (2011), Henson et al. (2011), and Siegel et al. (2014), we have compiled in situ measurements (temperature, chlorophyll, primary production, phytoplankton biomass and size structure, grazing rates, net chlorophyll change, and carbon export) made during Lagrangian process studies on seven cruises in the California Current Ecosystem and Costa Rica Dome. A food-web based approach formulated by Siegel et al. (2014) performs as well or better than other empirical formulations, while simultaneously providing reasonable estimates of protozoan and mesozooplankton grazing rates. By tuning the Siegel et al. (2014) algorithm to match in situ grazing rates more accurately, we also obtain better in situ carbon export measurements. Adequate representations of food-web relationships and grazing dynamics are therefore crucial to improving the accuracy of export predictions made from satellite– derived products. Nevertheless, considerable unexplained variance in export remains and must be explored before we can reliably use remote sensing products to assess the impact of climate change on biologically mediated carbon sequestration

    High contribution of Rhizaria (Radiolaria) to vertical export in the California Current Ecosystem revealed by DNA metabarcoding.

    No full text
    Passive sinking of particulate organic matter (POM) is the main mechanism through which the biological pump transports surface primary production to the ocean interior. However, the contribution and variability of different biological sources to vertical export is not fully understood. Here, we use DNA metabarcoding of the 18S rRNA gene and particle interceptor traps (PITs) to characterize the taxonomic composition of particles sinking out of the photic layer in the California Current Ecosystem (CCE), a productive system with high export potential. The PITs included formalin-fixed and ‘live’ traps to investigate eukaryotic communities involved in the export and remineralization of sinking particles. Sequences affiliated with Radiolaria dominated the eukaryotic assemblage in fixed traps (90%), with Dinophyta and Metazoa making minor contributions. The prominence of Radiolaria decreased drastically in live traps, possibly due to selective consumption by copepods, heterotrophic nanoflagellates, and phaeodarians that were heavily enriched in these traps. These patterns were consistent across the water masses surveyed extending from the coast to offshore, despite major differences in productivity and trophic s

    Variable Atlantic bluefin tuna larval growth in the Gulf of Mexico: Importance of preferred prey.

    No full text
    ECOlogía trófica comparativa de LArvas de aTUN rojo atlántico (Thunnus thynnus) de las áreas de puesta del Medterraneo-NO y el Golfo de México.ECOLATU
    corecore