12 research outputs found

    Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES Project

    Get PDF
    An association between occurrence of wildfires and mortality in the exposed population has been observed in several studies with controversial results for cause-specific mortality. In the Mediterranean area, forest fires usually occur during spring-summer, they overlap with Saharan outbreaks, are associated with increased temperature and their health effects are probably due to an increase in particulate matter. We analysed the effects of wildfires and particulate matter (PM10) on mortality in 10 southern European cities in Spain, France, Italy and Greece (2003-2010), using satellite data for exposure assessment and Poisson regression models, simulating a case-crossover approach. We found that smoky days were associated with increased cardiovascular mortality (lag 0-5, 6.29%, 95% CIs 1.00 to 11.85). When the effect of PM10 (per 10 µg/m(3)) was evaluated, there was an increase in natural mortality (0.49%), cardiovascular mortality (0.65%) and respiratory mortality (2.13%) on smoke-free days, but PM10-related mortality was higher on smoky days (natural mortality up to 1.10% and respiratory mortality up to 3.90%) with a suggestion of effect modification for cardiovascular mortality (3.42%, p value for effect modification 0.055), controlling for Saharan dust advections. Smoke is associated with increased cardiovascular mortality in urban residents, and PM10 on smoky days has a larger effect on cardiovascular and respiratory mortality than on other days.Peer ReviewedPostprint (published version

    The risks of acute exposure to black carbon in Southern Europe: results from the MED-PARTICLES project

    Get PDF
    While several studies have reported associations of daily exposures to PM2.5 (particles less than 2.5 µm) with mortality, few studies have examined the impact of its constituents such as black carbon (BC), which is also a significant contributor to global climate change. Methods: We assessed the association between daily concentrations of BC and total, cardiovascular and respiratory mortality in two southern Mediterranean cities. Daily averages of BC were collected for 2 years in Barcelona, Spain and Athens, Greece. We used case-crossover analysis and examined single and cumulative lags up to 3 days. Results: We observed associations between BC and all mortality measures. For a 3-day moving average, cardiovascular mortality increased by 4.5% (95% CI 0.7 to 8.5) and 2.0% (95% CI 0 to 4.0) for an interquartile change in BC in Athens and Barcelona, respectively. Considerably higher effects for respiratory mortality and for those above age 65 were observed. In addition, BC exhibited much greater toxicity per microgram than generic PM2.5. Conclusions: Our findings suggest that BC, derived in western industrialised nations primarily from diesel engines and biomass burning, poses a significant burden to public health, particularly in European cities with high-traffic density.Peer ReviewedPostprint (published version

    Desert dust outbreaks in southern Europe: contribution to daily PM10 concentrations and short-term associations with mortality and hospital admissions

    No full text
    BACKGROUND: Evidence on the association between short-term exposure to desert dust and health outcomes is controversial. OBJECTIVES: We aimed to estimate the short-term effects of particulate matter ≤ 10 μm (PM10) on mortality and hospital admissions in 13 Southern European cities, distinguishing between PM10 originating from the desert and from other sources. METHODS: We identified desert dust advection days in multiple Mediterranean areas for 2001-2010 by combining modeling tools, back-trajectories, and satellite data. For each advection day, we estimated PM10 concentrations originating from desert, and computed PM10 from other sources by difference. We fitted city-specific Poisson regression models to estimate the association between PM from different sources (desert and non-desert) and daily mortality and emergency hospitalizations. Finally, we pooled city-specific results in a random-effects meta-analysis. RESULTS: On average, 15% of days were affected by desert dust at ground level (desert PM10 > 0 μg/m3). Most episodes occurred in spring-summer, with increasing gradient of both frequency and intensity north-south and west-east of the Mediterranean basin. We found significant associations of both PM10 concentrations with mortality. Increases of 10 μg/m3 in non-desert and desert PM10 (lag 0-1 days) were associated with increases in natural mortality of 0.55% (95% CI: 0.24, 0.87%) and 0.65% (95% CI: 0.24, 1.06%), respectively. Similar associations were estimated for cardio-respiratory mortality and hospital admissions. CONCLUSIONS: PM10 originating from the desert was positively associated with mortality and hospitalizations in Southern Europe. Policy measures should aim at reducing population exposure to anthropogenic airborne particles even in areas with large contribution from desert dust advections

    Short-term effects of particulate matter on mortality during forest fires in Southern Europe: results of the MED-PARTICLES Project

    No full text
    An association between occurrence of wildfires and mortality in the exposed population has been observed in several studies with controversial results for cause-specific mortality. In the Mediterranean area, forest fires usually occur during spring-summer, they overlap with Saharan outbreaks, are associated with increased temperature and their health effects are probably due to an increase in particulate matter. We analysed the effects of wildfires and particulate matter (PM10) on mortality in 10 southern European cities in Spain, France, Italy and Greece (2003-2010), using satellite data for exposure assessment and Poisson regression models, simulating a case-crossover approach. We found that smoky days were associated with increased cardiovascular mortality (lag 0-5, 6.29%, 95% CIs 1.00 to 11.85). When the effect of PM10 (per 10 µg/m(3)) was evaluated, there was an increase in natural mortality (0.49%), cardiovascular mortality (0.65%) and respiratory mortality (2.13%) on smoke-free days, but PM10-related mortality was higher on smoky days (natural mortality up to 1.10% and respiratory mortality up to 3.90%) with a suggestion of effect modification for cardiovascular mortality (3.42%, p value for effect modification 0.055), controlling for Saharan dust advections. Smoke is associated with increased cardiovascular mortality in urban residents, and PM10 on smoky days has a larger effect on cardiovascular and respiratory mortality than on other days.Peer Reviewe

    The risks of acute exposure to black carbon in Southern Europe: results from the MED-PARTICLES project

    No full text
    While several studies have reported associations of daily exposures to PM2.5 (particles less than 2.5 µm) with mortality, few studies have examined the impact of its constituents such as black carbon (BC), which is also a significant contributor to global climate change. Methods: We assessed the association between daily concentrations of BC and total, cardiovascular and respiratory mortality in two southern Mediterranean cities. Daily averages of BC were collected for 2 years in Barcelona, Spain and Athens, Greece. We used case-crossover analysis and examined single and cumulative lags up to 3 days. Results: We observed associations between BC and all mortality measures. For a 3-day moving average, cardiovascular mortality increased by 4.5% (95% CI 0.7 to 8.5) and 2.0% (95% CI 0 to 4.0) for an interquartile change in BC in Athens and Barcelona, respectively. Considerably higher effects for respiratory mortality and for those above age 65 were observed. In addition, BC exhibited much greater toxicity per microgram than generic PM2.5. Conclusions: Our findings suggest that BC, derived in western industrialised nations primarily from diesel engines and biomass burning, poses a significant burden to public health, particularly in European cities with high-traffic density.Peer Reviewe

    Associations between Fine and Coarse Particles and Mortality in Mediterranean Cities:Results from the MED-PARTICLES Project

    Get PDF
    Background: Few studies have investigated the independent health effects of different size fractions of particulate matter (PM) in multiple locations, especially in Europe.Objectives: We estimated the short-term effects of PM with aerodynamic diameter ≤ 10 μm (PM10), ≤ 2.5 μm (PM2.5), and between 2.5 and 10 μm (PM2.5–10) on all-cause, cardiovascular, and respiratory mortality in 10 European Mediterranean metropolitan areas within the MED-PARTICLES project.Methods: We analyzed data from each city using Poisson regression models, and combined city-specific estimates to derive overall effect estimates. We evaluated the sensitivity of our estimates to co-pollutant exposures and city-specific model choice, and investigated effect modification by age, sex, and season. We applied distributed lag and threshold models to investigate temporal patterns of associations.Results: A 10-μg/m3 increase in PM2.5 was associated with a 0.55% (95% CI: 0.27, 0.84%) increase in all-cause mortality (0–1 day cumulative lag), and a 1.91% increase (95% CI: 0.71, 3.12%) in respiratory mortality (0–5 day lag). In general, associations were stronger for cardiovascular and respiratory mortality than all-cause mortality, during warm versus cold months, and among those ≥ 75 versus < 75 years of age. Associations with PM2.5–10 were positive but not statistically significant in most analyses, whereas associations with PM10 seemed to be driven by PM2.5.Conclusions: We found evidence of adverse effects of PM2.5 on mortality outcomes in the European Mediterranean region. Associations with PM2.5–10 were positive but smaller in magnitude. Associations were stronger for respiratory mortality when cumulative exposures were lagged over 0–5 days, and were modified by season and age

    Associations between fine and coarse particles and mortality in Mediterranean cities: results from the MED-PARTICLES project

    No full text
    Few studies have investigated the independent health effects of different size fractions of particulate matter (PM) in multiple locations, especially in Europe. We estimated the short-term effects of PM with aerodynamic diameter = 10 µm (PM10), = 2.5 µm (PM2.5), and between 2.5 and 10 µm (PM2.5–10) on all-cause, cardiovascular, and respiratory mortality in 10 European Mediterranean metropolitan areas within the MEDPARTICLES project. We analyzed data from each city using Poisson regression models, and combined cityspecific estimates to derive overall effect estimates. We evaluated the sensitivity of our estimates to co-pollutant exposures and city-specific model choice, and investigated effect modification by age, sex, and season. We applied distributed lag and threshold models to investigate temporal patterns of associations. A 10-µg/m3 increase in PM2.5 was associated with a 0.55% (95% CI: 0.27, 0.84%) increase in all-cause mortality (0–1 day cumulative lag), and a 1.91% increase (95% CI: 0.71, 3.12%) in respiratory mortality (0–5 day lag). In general, associations were stronger for cardiovascular and respiratory mortality than all-cause mortality, during warm versus cold months, and among those = 75 versus < 75 years of age. Associations with PM2.5–10 were positive but not statistically significant in most analyses, whereas associations with PM10 seemed to be driven by PM2.5. We found evidence of adverse effects of PM2.5 on mortality outcomes in the European Mediterranean region. Associations with PM2.5–10 were positive but smaller in magnitude. Associations were stronger for respiratory mortality when cumulative exposures were lagged over 0–5 days, and were modified by season and age.Peer Reviewe

    Short-term effects of particulate matter on mortality during forest fires in Southern Europe: Results of the MED-PARTICLES project

    No full text
    Background: An association between occurrence of wildfires and mortality in the exposed population has been observed in several studies with controversial results for cause-specific mortality. In the Mediterranean area, forest fires usually occur during spring-summer, they overlap with Saharan outbreaks, are associated with increased temperature and their health effects are probably due to an increase in particulate matter. Aim and methods: We analysed the effects of wildfires and particulate matter (PM10) on mortality in 10 southern European cities in Spain, France, Italy and Greece (2003-2010), using satellite data for exposure assessment and Poisson regression models, simulating a case-crossover approach. Results: We found that smoky days were associated with increased cardiovascular mortality (lag 0-5, 6.29%, 95% CIs 1.00 to 11.85). When the effect of PM10 (per 10 mg/m3) was evaluated, there was an increase in natural mortality (0.49%), cardiovascular mortality (0.65%) and respiratory mortality (2.13%) on smoke-free days, but PM10-related mortality was higher on smoky days (natural mortality up to 1.10% and respiratory mortality up to 3.90%) with a suggestion of effect modification for cardiovascular mortality (3.42%, p value for effect modification 0.055), controlling for Saharan dust advections. Conclusions: Smoke is associated with increased cardiovascular mortality in urban residents, and PM10 on smoky days has a larger effect on cardiovascular and respiratory mortality than on other days

    Particulate matter and gaseous pollutants in the Mediterranean Basin: Results from the MED-PARTICLES project

    No full text
    Previous studies reported significant variability of air pollutants across Europe with the lowest concentrations generally found in Northern Europe and the highest in Southern European countries. Within the MED-PARTICLES project the spatial and temporal variations of long-term PM and gaseous pollutants data were investigated in traffic and urban background sites across Southern Europe. The highest PM levels were observed in Greece and Italy (Athens, Thessaloniki, Turin and Rome) while all traffic sites showed high NO2levels, frequently exceeding the established limit value. High PM2.5/PM10ratios were calculated indicating that fine particles comprise a large fraction of PM10, with the highest values found in the urban background sites. It seems that although in traffic sites the concentrations of both PM2.5and PM10are significantly higher than those registered in urban background sites, the coarse fraction PM2.5-10is more important at the traffic sites. This fact is probably due to the high levels of resuspended road dust in sites highly affected by traffic, a phenomenon particularly relevant for Mediterranean countries. The long-term trends of air pollutants revealed a significant decrease of the concentration levels for PM, SO2and CO while for NO2no clear trend or slightly increasing trends were observed. This reduction could be attributed to the effectiveness of abatement measures and strategies and also to meteorological conditions and to the economic crisis that affected Southern Europe. \uc2\ua9 2014 Elsevier B.V

    Short-term effects of particulate matter constituents on daily hospitalizations and mortality in five South-European cities: Results from the MED-PARTICLES project

    No full text
    Background: Few recent studies examined acute effects on health of individual chemical species in the particulate matter (PM) mixture, and most of them have been conducted in North America. Studies in Southern Europe are scarce. The aim of this study is to examine the relationship between particulate matter constituents and daily hospital admissions and mortality in five cities in Southern Europe. Methods: The study included five cities in Southern Europe, three cities in Spain: Barcelona (2003-2010), Madrid (2007-2008) and Huelva (2003-2010); and two cities in Italy: Rome (2005-2007) and Bologna (2011-2013). A case-crossover design was used to link cardiovascular and respiratory hospital admissions and total, cardiovascular and respiratory mortality with a pre-defined list of 16 PM10and PM2.5constituents. Lags 0 to 2 were examined. City-specific results were combined by random-effects meta-analysis. Results: Most of the elements studied, namely EC, SO42-, SiO2,Ca, Fe, Zn, Cu, Ti, Mn, V and Ni, showed increased percent changes in cardiovascular and/or respiratory hospitalizations, mainly at lags 0 and 1. The percent increase by one interquartile range (IQR) change ranged from 0.69% to 3.29%. After adjustment for total PM levels, only associations for Mn, Zn and Ni remained significant. For mortality, although positive associations were identified (Fe and Ti for total mortality; EC and Mg for cardiovascular mortality; and NO3-for respiratory mortality) the patterns were less clear. Conclusions: The associations found in this study reflect that several PM constituents, originating from different sources, may drive previously reported results between PM and hospital admissions in the Mediterranean area
    corecore