61 research outputs found

    A viscoelastic anisotropic hyperelastic constitutive model of the human cornea

    Get PDF
    A constitutive model based on the continuum mechanics theory has been developed which represents interlamellar cohesion, regional variation of collagen fibril density, 3D anisotropy and both age-related viscoelastic and hyperelastic stiffening behaviour of the human cornea. Experimental data gathered from a number of previous studies on 48 ex vivo human cornea (inflation and shear tests) enabled calibration of the constitutive model by numerical analysis. Wide-angle X-ray scattering and electron microscopy provided measured data which quantify microstructural arrangements associated with stiffness. The present study measures stiffness parallel to the lamellae of the cornea which approximately doubles with an increase in strain rate from 0.5 to 5%/min, while the underlying stromal matrix provides a stiffness 2–3 orders of magnitude lower than the lamellae. The model has been simultaneously calibrated to within 3% error across three age groups ranging from 50 to 95 years and three strain rates across the two loading scenarios. Age and strain-rate-dependent material coefficients allow numerical simulation under varying loading scenarios for an individual patient with material stiffness approximated by their age. This present study addresses a significant gap in numerical representation of the cornea and has great potential in daily clinical practice for the planning and optimisation of corrective procedures and in preclinical optimisation of diagnostic procedures

    Patient-specific finite element analysis of human corneal lenticules: An experimental and numerical study.

    Get PDF
    The number of elective refractive surgeries is constantly increasing due to the drastic increase in myopia prevalence. Since corneal biomechanics are critical to human vision, accurate modeling is essential to improve surgical planning and optimize the results of laser vision correction. In this study, we present a numerical model of the anterior cornea of young patients who are candidates for laser vision correction. Model parameters were determined from uniaxial tests performed on lenticules of patients undergoing refractive surgery by means of lenticule extraction, using patient-specific models of the lenticules. The models also took into account the known orientation of collagen fibers in the tissue, which have an isotropic distribution in the corneal plane, while they are aligned along the corneal curvature and have a low dispersion outside the corneal plane. The model was able to reproduce the experimental data well with only three parameters. These parameters, determined using a realistic fiber distribution, yielded lower values than those reported in the literature. Accurate characterization and modeling of the cornea of young patients is essential to study better refractive surgery for the population undergoing these treatments, to develop in silico models that take corneal biomechanics into account when planning refractive surgery, and to provide a basis for improving visual outcomes in the rapidly growing population undergoing these treatments

    Orientation and depth dependent mechanical properties of the porcine cornea: Experiments and parameter identification.

    Get PDF
    The porcine cornea is a standard animal model in ophthalmic research, making its biomechanical characterization and modeling important to develop novel treatments such as crosslinking and refractive surgeries. In this study, we present a numerical model of the porcine cornea based on experimental measurements that captures both the depth dependence and orientation dependence of the mechanical response. The mechanical parameters of the established anisotropic hyperelastic material models of Gasser, Holzapfel and Ogden (HGO) and Markert were determined using tensile tests. Corneas were cut with a femtosecond laser in the anterior (100 μm), central (350 μm), and posterior (600 μm) regions into nasal-temporal, superior-inferior, and diagonal strips of 150 μm thickness. These uniformly thick strips were tested at a low speed using a single-axis testing machine. The results showed that the corneal mechanical properties remained constant in the anterior half of the cornea regardless of orientation, but that the material softened in the posterior layer. These results are consistent with the circular orientation of collagen observed in porcine corneas using X-ray scattering. In addition, the parameters obtained for the HGO model were able to reproduce the published inflation tests, indicating that it is suitable for simulating the mechanical response of the entire cornea. Such a model constitutes the basis for in silico platforms to develop new ophthalmic treatments. In this way, researchers can match their experimental surrogate porcine model with a numerical counterpart and validate the prediction of their algorithms in a complete and accessible environment

    Depth-dependent mechanical properties of the human cornea by uniaxial extension.

    Get PDF
    The purpose of this study was to investigate the depth-dependent biomechanical properties of the human corneal stroma under uniaxial tensile loading. Human stroma samples were obtained after the removal of Descemet's membrane in the course of Descemet's membrane endothelial keratoplasty (DMEK) transplantation. Uniaxial tensile tests were performed at three different depths: anterior, central, and posterior on 2 x 6 × 0.15 mm strips taken from the central DMEK graft. The measured force-displacement data were used to calculate stress-strain curves and to derive the tangent modulus. The study showed that mechanical strength decreased significantly with depth. The anterior cornea appeared to be the stiffest, with a stiffness approximately 18% higher than that of the central cornea and approximately 38% higher than that of the posterior layer. Larger variations in mechanical response were observed in the posterior group, probably due to the higher degree of alignment of the collagen fibers in the posterior sections of the cornea. This study contributes to a better understanding of the biomechanical tensile properties of the cornea, which has important implications for the development of new treatment strategies for corneal diseases. Accurate quantification of tensile strength as a function of depth is critical information that is lacking in human corneal biomechanics to develop numerical models and new treatment methods

    Incidence of Atypical Femoral Fractures in Patients on Osteoporosis Therapy-A Registry-Based Cohort Study.

    Get PDF
    Atypical femoral fractures (AFFs) have been reported in patients taking bisphosphonates (BPs) for osteoporosis therapy but also in patients with no exposure to these drugs. In contrast, less is known about the incidence of AFFs in patients taking denosumab. This registry-based cohort study analyzed the incidence of AFFs in patients with suspected or confirmed osteoporosis who were included in the osteoporosis register of the Swiss Society of Rheumatology between January 2015 and September 2019. Statistical analyses included incidence rates, rate ratios, and hazard ratios for AFFs, and considered sequential therapies and drug holidays as time-dependent covariates. Among the 9956 subjects in the cohort, 53 had subtrochanteric or femoral shaft fractures. Ten fractures occurred under BP or denosumab treatment and two under teriparatide therapy. Five fractures were classified as AFFs based on the revised American Society of Bone and Mineral Research case definition of AFFs from 2014. Three AFFs occurred in women being treated with denosumab at the time of diagnosis, all with prior BP use (10, 7, and 1 years, respectively). One AFF developed in a woman receiving ibandronate and one arose in a woman receiving glucocorticoids rather than antiresorptive therapy. The incidence of AFFs per 10,000 observed patient-years was 7.1 in patients receiving denosumab and 0.9 in patients with BP-associated AFFs, yielding a rate ratio of 7.9 (95% confidence interval [CI] 0.63-413), p = 0.073. The risk of AFFs was not significantly higher in patients receiving denosumab therapy compared with BP therapy (hazard ratio = 7.07, 95% CI 0.74-68.01, p = 0.090). We conclude that the risk of AFFs is low in patients taking BPs, denosumab, or both sequentially. All three patients with AFFs under denosumab therapy had undergone prior BP therapy. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research

    Comparison of anti-fracture effectiveness of zoledronate, ibandronate and alendronate versus denosumab in a registry-based cohort study.

    Get PDF
    UNLABELLED This registry-based study of 3068 patients with osteoporosis compared the anti-fracture effectiveness of denosumab versus bisphosphonates. Denosumab was associated with significantly greater risk reduction than alendronate or ibandronate for vertebral and any fractures. No difference in fracture risk reduction was found between zoledronate and denosumab. PURPOSE To analyse the fracture risk of patients with osteoporosis receiving bisphosphonates or denosumab in a real-world setting. METHODS This registry-based cohort study evaluated patients taking denosumab, bisphosphonates or both sequentially. Fractures were analysed using rates, rate ratios and hazard ratios (HR), including both therapies as time-varying co-variates. Fracture risk hazards were adjusted (aHR) for baseline T-Scores and trabecular bone score (TBS) and were additionally analysed with inverse probability treatment weighting. RESULTS A total of 3068 patients (89% female; median age at treatment onset, 69 years [63 to 76]) received denosumab (median duration 2.8 years, [2.2 to 4.7]), bisphosphonates (3.4 years, [2.1 to 5.7]) or both sequentially. Thus, 11,078 subject-years were assessed for bisphosphonates (41% alendronate, 36% ibandronate, 23% zoledronate) and 4216 for denosumab. Moreover, 48,375 subject-years were observed before treatment onset, in addition to 2593 years of drug holidays. A total of 1481 vertebral fractures (435 under therapy), 1508 non-vertebral fractures (499 under therapy) and 202 hip fractures (67 under therapy) occurred after age 50. The risks of vertebral, non-vertebral and hip fractures were significantly lower under all bisphosphonates, denosumab and drug holidays than before treatment onset (all p < 0.001). After adjusting for age, baseline T-scores and TBS, denosumab was associated with lower risk than alendronate or ibandronate for vertebral fractures (aHR 0.47 (0.35 to 0.64) and 0.70 [0.53 to 0.91], p < 0.001 and p = 0.009, respectively) and any fractures (aHR 0.62 [0.51 to 0.76] and 0.77 [0.64 to 0.92], p < 0.001 and p = 0.004). With propensity weighting, denosumab was associated with a lower hip fracture risk compared to alendronate (HR 0.54 [0.29 to 0.98], p = 0.044). No difference in fracture risk reduction (vertebral, non-vertebral or hip) was found between zoledronate and denosumab. CONCLUSIONS When adjusting for disease severity, denosumab was associated with significantly greater risk reduction than alendronate and ibandronate for vertebral fractures. No difference in fracture risk reduction was found between zoledronate and denosumab

    Microstructure-based Numerical Simulation of the Mechanical Behaviour of Ocular Tissue

    Get PDF
    This paper aims to present a novel full-eye biomechanical material model that incorporates the characteristics of ocular tissues at microstructural level, and use the model to analyse the age-related stiffening in tissue behaviour. The collagen content in ocular tissues, as obtained using X-ray scattering measurements, was represented by sets of Zernike polynomials that covered both the cornea and sclera, then used to reconstruct maps of collagen fibril magnitude and orientation on the 3D geometry of the eye globe. Fine-mesh finite element (FE) models with eye-specific geometry were built and supported by a user-defined material model (UMAT), which considered the regional variation of fibril density and orientation. The models were then used, in an iterative inverse modelling study to derive the material parameters that represent the experimental behaviour of ocular tissues from donors aged between 50 and 90 years obtained in earlier ex-vivo studies. Sensitivity analysis showed that reducing the number of directions that represented the anisotropy of collagen fibril orientation at each X-ray scattering measurement point from 180 to 16 would have limited and insignificant effect on the FE solution (0.08%). Inverse analysis resulted in material parameters that provided a close match with experimental intraocular pressure-deformation behaviour with a root mean square (RMS) of error between 3.6% and 4.3%. The results also demonstrated a steady increase in mechanical stiffness in all ocular regions with age. A constitutive material model based on distributions of collagen fibril density and orientation has been developed to enable the accurate representation of the biomechanical behaviour of ocular tissues. The model offers a high level of control of stiffness and anisotropy across ocular globe, and therefore has the potential for use in planning surgical and medical procedures

    Intensity modulated radiotherapy (IMRT) in the treatment of children and Adolescents - a single institution's experience and a review of the literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While IMRT is widely used in treating complex oncological cases in adults, it is not commonly used in pediatric radiation oncology for a variety of reasons. This report evaluates our 9 year experience using stereotactic-guided, inverse planned intensity-modulated radiotherapy (IMRT) in children and adolescents in the context of the current literature.</p> <p>Methods</p> <p>Between 1999 and 2008 thirty-one children and adolescents with a mean age of 14.2 years (1.5 - 20.5) were treated with IMRT in our department. This heterogeneous group of patients consisted of 20 different tumor entities, with Ewing's sarcoma being the largest (5 patients), followed by juvenile nasopharyngeal fibroma, esthesioneuroblastoma and rhabdomyosarcoma (3 patients each). In addition a review of the available literature reporting on technology, quality, toxicity, outcome and concerns of IMRT was performed.</p> <p>Results</p> <p>With IMRT individualized dose distributions and excellent sparing of organs at risk were obtained in the most challenging cases. This was achieved at the cost of an increased volume of normal tissue receiving low radiation doses. Local control was achieved in 21 patients. 5 patients died due to progressive distant metastases. No severe acute or chronic toxicity was observed.</p> <p>Conclusion</p> <p>IMRT in the treatment of children and adolescents is feasible and was applied safely within the last 9 years at our institution. Several reports in literature show the excellent possibilities of IMRT in selective sparing of organs at risk and achieving local control. In selected cases the quality of IMRT plans increases the therapeutic ratio and outweighs the risk of potentially increased rates of secondary malignancies by the augmented low dose exposure.</p
    • …
    corecore