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A constitutive numerical model based on the continuum mechanics theory has been 

developed which represents interlamellar cohesion, regional variation of collagen fib-ril 

density, 3D anisotropy and both age-related viscoelastic and hyperelastic stiff ening 

behaviour of the human cornea. Experimental data gathered from a number of previ-

ous studies on 48 ex vivo human cornea (inflation and shear tests) enabled numerical 

model calibration. Wide angle X-ray scattering and electron microscopy provided mea-

sured data which quantifies microstructural arrangements associated with stiff ness. 

The present study suggests that stiff ness parallel to the lamellae of the cornea 

approximately doubles with an increase in strain-rate from 0.5 to 5%/min, while the 

underlying stromal matrix provides a stiff ness 2-3 orders of magnitude lower than the 

lamellae. The model has been simultaneously calibrated to within 5% error across 3 

age groups ranging from 50-95 years, multiple strain-rates and multiple loading 

scenarios. Age and strain-rate dependent material coefficients allow finite element 

modelling for an individual patient with material stiff ness approximated by their age 

under varying loading scenarios. This present study addresses a significant gap in 

numerical representation of the cornea and has great potential in both daily clinical 

practice for the planning and optimisation of 
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corrective procedures and in pre-clinical optimisation of diagnostic procedures. 
 
 

 
Introduction 
 
 
The ocular vessel consists of the cornea, sclera and corneoscleral limbal junction. 

The vessel protects the internal contents of the eye and maintains the eye’s general 

shape, which is necessary for clear vision. The transparent cornea, at the anterior 

segment of the eye, provides two-thirds of the eye’s optical power (Fatt, 1978), and 

this contribution is primarily determined by the cornea’s external topography, clarity 

and refractive index relative to the external environment. 
 
The topography of the cornea is determined by the balanced state between the forces 

acting upon it and its mechanical stiff ness, which is defined by cornea’s geometry and 

thickness, and the material stiff ness. The term balanced state is often referred to as the 

equilibrium state. However, equilibrium refers specifically to static behaviour and this 

term is no longer appropriate while describing this relationship in the context of 

viscoelastic be-haviour. This is due to the dynamic state of the system, including the 

forces acting within the material and mass inertia of the system where equilibrium state 

is only achieved as time tends to infinity and both internal forces and inertia tend to zero. 

While the geometry and thickness, and their contribution to overall mechanical stiffness, 

are easy to determine, the material stiff ness is much more difficult to quantify as it is 

dependent on the microstructure of the stroma; the main load carrying layer of the 

cornea. The stroma is composed of over 200 lamellae (Freegard, 1997; Oyster, 1999), 

each of which formed of a proteoglycan-rich matrix containing tightly packed and 

ordered collagen fibrils. The density and orientation of collagen fibrils in the stroma are 

the primary factors affecting the material stiffness, and hence the overall mechanical 

stiff ness of the cornea (Jue et al., 1991; Newton and Meek, 1998; Boote et al., 2003, 

2009). Wide angle X-ray scattering (WAXS) has been extensively used to detail the 2D 

anisotropic arrangement of collagen fibrils in the human cornea (Aghamoham-madzadeh 

et al., 2004; Meek and Boote, 2004; Boote et al., 2006). Further, the 3D organization of 

fibrils was observed by Komai and Ushiki (1991) using electron microscopy where the 

arrangement of lamellae and inter-lamellae fibrils was observed. Whitford et al. (2015) 

analysed the data within these studies and extracted relationships defining the regional 

variation of collagen fibril density and anisotropy across corneal surface.  
 
To date there have been a significant number of studies which have progressed the 

numerical representation of the cornea in its quasi-static state. These have included 
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Alastrue et al. (2006); Pandolfi and Manganiello (2006); Pandolfi and Holzapfel (2008); 

Pinsky et al. (2005); Petsche and Pinsky (2013); Studer et al. (2010); Grytz and 

Meschke (2009, 2010); Nguyen and Boyce (2011); Whitford et al. (2015). Further, 

dynamic (non-static) behaviour of the cornea has been modelled in various studies. 

Glass et al. (2008) developed an isotropic, homogeneous, analytical model describing 

the eff ect of viscosity and elasticity on hysteresis in the human cornea. Perez et al. 

(2013) developed a viscoelastic model of the eye that was limited to linear-elastic, 

isotropic representation of porcine eyes with a homogeneous corneal representation. 

Kling et al. (2014) considered an isotropic, linear, viscoelastic corneal model within a 

multi-physics simulation of air-puff  tonometry. Su et al. (2015) ?. Boyce et al. (2007) and 

Nguyen et al. (2008) developed viscoelastic constitutive models which were used to 

describe the behaviour of bovine cornea based on the results of strip-extensiometry. 
 
To the author’s knowledge, this is the first study that combines the com-plex anisotropic 

representation, shear stiffness and regional variation of fibril density of the human 

cornea with its viscoelastic behaviour. The study further attempts to calibrate the 

proposed model with existing ex vivo human data. The research builds on a recent study 

by the authors (Whitford et al., 2015) that introduced the representation of regional vari-

ation of collagen fibril density and proposes a constitutive model that decomposes the 

stress-strain behaviour into four components representing (1) dilation, (2) isotropic 

matrix distortion response to both tension and compression, (3) anisotropic and regional 

variation of collagen fibrils, and (4) the time-dependent constituent which represents the 

non-linear, strain rate-dependence of behaviour.
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Methods and Materials 
 
 
 
Constitutive model 
 
The non-linear anisotropic incompressible material behaviour of the corneal stroma 

can be numerically represented using a strain-energy density function: 

 
ψ = ψ [C, A, B] , (1) 

 

 

where C is the right Cauchy-Green deformation tensor calculated from the deformation 

gradient. C = FT F with F being a second order tensor representing the gradient of the 

mapping function which relates the current configuration of a continuum to its reference 

configuration. A = a ⊗ a and B = b ⊗ b are anisotropic tensors, based on vectors a and b 

which define single discretised directions of anisotropy. Similar to a procedure presented 

earlier (Studer et al., 2010), an isochoric split is performed on the energy density 

function to separate the responses to a volume-changing dilation and a volume- 
 
preserving distortion:  

ψ = U [J] + ψ
¯

 C
¯

, A, B , (2) 
 ¯         
where C is the distortion component of the right Cauchy-Green deformation tensor 
defined from C = J 2/3  ¯ 2/3 ¯ ¯ , 

 I C = J C where I represents the unit tensor, J = det F 

F =  J 
1/3 ¯ ¯       
 I F and F defines the deformation gradient associated with distortion. Fur- 

ther explanation of these concepts is provided by Holzapfel (2000) and others. In 

order to provide separate representations of the matrix’ and fibrils’ contributions to 

mechanical behaviour, a second split of the strain energy function is performed: 
 

ψ = U [J] + ψ¯m  C¯ + ψ¯f  C¯, A, B , (3) 
4 
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As in Whitford et al. (2015) and other studies, the dilation constituent, U [J], from 
Eqn. 3 is given by: 

U [J] = 1 (J − 1)
2
 , (4) D    

 
where D is the material coefficient describing volume change. Also in the neo-Hookean 

formulation, the constituent equation to represent the matrix stiff ness is given by: 
 

ψ¯m  I¯1 = C10 I¯1 − 3 , (5) 
    ¯ 
where the distortion component of the right Cauchy-Green deformation tensor, C, was 

¯ ¯  
is a material constant. replaced by its first strain invariant; I1 = trC, and C10  

Since in this equation A and B are second order tensors and each can only 

represent a single direction of anisotropy, an adaptation is required to enable 

consideration of a multi-directional fibril orientation. Pinsky et al. (2005) presented a 

numerical method to describe the angular distribution of collagen fibrils in the 

corneal and limbal stroma obtained from WAXS studies (Aghamohammadzadeh et 

al., 2004). This method was later modified by Studer et al. (2010). The coordinate 

system adopted is presented in Whitford et al. (2015). Also from Whitford et al. 

(2015) the strain-energy function describing the fibril response is given by: 

ψ
¯

f C
¯

, A, B  = ζ π 
Z

0 π dθL, (6) 
χ  ψ

¯
f,lamellae  C

¯
, A + ψ

¯
f,ILC  C

¯
, B 

  1     

 
 
 
The lamellae and ILC fibril contributions to the constituent equation were based on 

the polynomial Ogden law, modified by Markert et al. (2005) to include one direction 

of anisotropy. They were therefore rewritten as: 
ψ¯

f,lamellae  
I¯

4  
=

 γ1 I¯42 − 1  − µ1 ln I
¯

4 ,  
  µ1    2  

     γ1  1  

  

   

γ2 − 1 1 (7)    
ψ¯

f,ILC  I¯6 = γ2 I¯62 − µ2 ln I¯6 ,  
   µ2    2  

 
 

where 
¯ 

A and 
¯ 

= 
¯ 

: (a ⊗ a), C, B in Eqn. 6 are replaced by the invariants I4 C 
¯ ¯       

I6 = C : (b ⊗ b) and material parameters µ (polynomial coefficient relating to stiff ness)  
and γ (governing nonlinearity relating to hyperelasticity). 
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The condition where the fibril constituent of Eqn. 3 is only activated where tension is  

1 
applied, λ4,6 = I 2, > 1, as it is considered that only the matrix carries compressive 

4 6 
 
forces. 
 
Numerical parameters ζ and χ represent the global and local distributions of 

collagen fibrils respectively. The derivation and definitions of these parameters can 

be found in Whitford et al. (2015). 
 

To accommodate rate-dependency within the model the response of the material be-

comes a function of time, t ∈ [0, T ], where reference time t = 0 relates to the refer-ence 

configuration, Ω0. Viscoelastic eff ects are described using the concept of internal 

variables. These variables are not accessible to direct observation; they describe the 

internal structure of the material associated Holzapfel et al. (2000). Viscoelastic be-

haviour is modelled by m ≥ 1 relaxation processes with corresponding relaxation times, 
 

τα ∈ [0, ∞], α = 1, · · · , m (m ≥ 1), describing the rate of decay of the stress. These 

material variables vanish at the equilibrium state; which does not depend on time. 

The internal variables are denoted by α, α = 1, · · · , m. 
 
Mathematically, the adaptation of the model to represent viscoelastic response could be 

performed prior to the isochoric split, or the split between matrix and fibril def-initions, 

therefore accommodating viscoelastic behaviour of the dilation and/or the matrix within 

the model. However, the matrix and dilation contributions to stiff ness have been shown 

to have relatively less contribution to stiff ness than fibril behaviour (Whitford et al., 

2015). Further, insufficient knowledge prohibits the inclusion of vis-coelastic 

representation of the matrix due to lack in experimental data with which to calibrate such 

a model. Holzapfel and Gasser (2001) presented a model where the viscoelastic 

behaviour was a function of the distortion component of the strain-energy after the 

isochoric split had been performed. That model is modified here and the dis-sipative 

potentials are introduced providing the viscoelastic constituent as a function 

of the fibril constituent, m ¯∞ 
 ¯ ¯ α  . The th th 

α=1 f α   
 ψ C, A, B,  tangential and out-of-tangential 

fibril constituents of the
P

model being functions of the 4 and 6  strain invariants re- 
m   ∞  

C
¯

, I
¯

a, 
¯

α  , and the strain-energy function from spectively leads to 
P

α=1 
P

a=4,6 ψ
¯

f α a 
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Eqn. 3 becomes:  

∞ ¯
∞ 

¯  ¯
∞  ¯  m ¯∞ ¯  ¯   ¯  

   X  
       

ψ = U [J] + ψm 
I
1  + ψf  

I
4,6  + 

ψ
f α C, I4,6,  α (8) 

α=1 

 
At this stage the symmetric second Piola-Kirchhoff  stress tensor can be written de-

scribing the equilibrium stress response of the material: 

 

S
∞

 = Sdil
∞

 + Sm
∞

 + Sf
∞

. (9) 
 
 

The three contributions to the constitutive model, S
∞

dil, S
∞

m and S
∞

f, describe the 

dilation, and the isotropic and anisotropic distortion responses of the matrix and 

fibres respectively. These are given by: 
 

∞∂U 
∞ 

 ∞  ∂ψ
∞ 

 ∞  ∂ψf
∞ 

Sdil = 2 
 , Sm = 2 m , S

f = 2  (10) 
∂C ∂C 

 

       ∂C 
 
From Holzapfel and Gasser (2001) the rate-dependency is expressed as an additional 

component to the constitutive equation at time tn+1 and an adaptation the stress 

function is required where the non-equilibrium stresses, Qα = J 
−2/3 

P 
ˆ 

 : Qα where the 
4

th
 order projection tensor, P, is given by:    

P = I − C
−1

 ⊗ (C/3) ,  IIJ KL =  δIK δJ L + δIJ δKL  /2 (11) 
 
    ¯    

ˆ ∂ψf α C, A, B    
Qα = 2          

   ¯      

   ∂C     

The internal dissipation is defined as: D 

int 

= 

P 

m Q 

α 

: 

vanishes at equilibrium (t → ∞)   α=1   

 
 
 

(12) 
 
¯˙ 
α/2 ≥ 0. As the dissipation 

 

∂ψf α 
Qα = −2 ¯ = 0, α = 1, · · · , m (13) ∂ α t→∞ 

 
 
and Eqn. 9 becomes:  

S
n+1 

= 
 m n+1 (14) 

Sdil∞ + Sm∞ + Sf∞ + α=1 Qα 

  P   
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where the non-equilibrium stresses are defined by: 
 
 

  
(Qα) = (Hα)  + β∞ exp (ξα) S∞ , α = 1, · · · , m (15) 

n+1 n α f n+1 

 

and the definition of the history term, (Hα)n , α = 1, · · · , m, is modified from 

Holzapfel and Gasser (2001) providing 
 

∞  ∞   t  

(Hα)n = exp (ξα)  exp (ξα) (Qα)n − βα 
 

Sf n  , ξα = − 

 

(16) 2τα 

βα
∞

 ∈ [0, ∞] and τα ∈ [0, ∞] , α = 1, · · · , m are non-dimensional and time-

dimensional strain-energy factors respectively. These remain to be defined. For 

mathematical pur-poses the potentially inaccurate approximation is made that the 

viscoelastic stress of the reference configuration, Q
0+

α = 0. The accuracy of this 

approximation relates to the implementation of the constitutive model and is 

discussed later in the study. The stiff ness tensor at tn+1 can similarly be written as: 
 
         m  

! 
   D

n+1 
= 

Ddil
∞

 + Dm
∞

 + Df
∞

 + Dvis
α   (17) 

         X  n+1  

         α=1      

where               
∞ = 2 ∂Sdil

∞ 
∞ ∂Sm

∞ 
∞   ∂Sf

∞  
D   , D = 2  , D = 2   (18)     

dil  ∂C m  ∂C f   ∂C  
        

and               

(Dvis
α

)n+1 = δα  Df
∞

  n+1 , δα = βα
∞

 exp (ξα) ,  α = 1, · · · , m (19) 

 
Implementation of numerical simulation 
 
Numerical simulations have been conducted using finite element analysis (FEA). Geo-

metric modelling was performed using bespoke software that provides geometry, which 

can be imported into finite element solvers as an orphan mesh. Finite element solver 

Abaqus/Standard 6.13 (Dassault Systmes Simulia Corp., Rhode Island, USA) was used. 

Abaqus is well known for its ability to analyse non-linear problems. However, its abil-ity 

to provide state-of-the-art representation of biological material properties, and both 
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regional and local variation of these properties, is limited. Thus, Abaqus was used in 

conjunction with bespoke subroutines (SDVINI & UMAT) written in FORTRAN to 

implement the constitutive model described above. 
 1 π  1 180  

The integral of Eqn. 6 was discretized into steps of one degree by π R0 dθL → 
 P

i=1 
θ

L,i
, 

180 

where θL,i defines the orientation of the one hundred and eighty directions of 

anisotropy per integration point within the model. The assumption that all fibrils are 

straight is considered here, such that the range of the integral is only 1 − 180
◦
 and 

the condition where the fibril constituent of the model only provided tensile stiff ness 
was adopted throughout all behaviour stages. 
 
Subroutine SDVINI was used to provide initial, reference-configuration and location-

based conditions such as fibril density representation. These location-based 

properties are defined individually for each integration point. 
 
These are implemented into the numerical simulation using the UMAT subroutine as 

demonstrated in the Abaqus User Subroutines Reference Guide (?). UMAT is also 

used to define current-configuration properties such as anisotropy. 
 
Models were generated using fifteen-noded, solid, hybrid, quadratic elements (Abaqus, 

C3D15H). Elements were arranged in three layers and in twenty six rings. The shape of 

elements, and their arrangement, was chosen to provide uniform element sizes and con-

sistent approximation of geometry. The near-incompressibility of the corneal stroma is 

represented by hybrid elements which provide volume controls within the solver (Abaqus 

Theory Manual), and the constant D (Eqn. 4) was set to the low value of 10−5, indicating 

close to incompressible behaviour. Similar to Pandolfi and Holzapfel (2008): the 

remaining dilation term of Eqn. 8 becomes purely mathematically moti-vated. The 

arrangement of elements, three layers and twenty four rings, (Figure 1) was chosen by 

increasing the number of element layers and rings by assessing the conver-gence of the 

solution. The number of element rings was controlled by the number of element layers 

such that the aspect ratio of the elements approached 1. The number of layers, and 

therefore rings, was increased until the diff erence of apical deformation in the 

subsequent simulation with further refinement became less than 0.1%. C3D15H 

elements contain nine integration points. It was judged that the number of elements 
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provided good refinement regarding the regional variation of material properties, 

which were individually characterised for each integration point. 
 
 
Derivation of material properties 

 
 
(a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(b) 

 
 
 

 
Figure 1: Finite element model (FEM) of the human cornea: (a) anterior view; (b) 
side elevation view 
 
 
 
Characteristic experimental data has been obtained from 48 fresh human donor 

corneas. Data includes 36 corneas tested under inflation and 12 corneas tested under 

shear. The corneas tested under inflation were divided into two groups: 23 corneas 

tested with 37.5 mmHg/min pressure rate and 13 corneas tested with 3.75 mmHg/min 

rate (Elsheikh et al., 2007). The age range of the two groups was 51 − 95 (77.6 ± 13.2) 

and 50 − 95 (75.7 ± 14.2) years, respectively. Within each group, the corneas were 

divided into three age subgroups: 50 − 64, 65 − 79, and 80 − 95 years. The number of 

corneas tested under 37.5 mmHg/min was 4, 6, and 13 within the three age subgroups, 

respectively. The corresponding numbers tested under 3.75 mmHg/min were 4, 4, and 

5. 12 human donor corneas, aged between 61 and 74 years (67.7 ± 5.8), were tested to 

determine the behaviour of stromal tissue under surface shear at a shear deformation 

rate of 10%/min (with respect to the tissue’s thickness) (Elsheikh et al., 2009). Shear 
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tests do not generate strains parallel to the tangent plane; allowing the isolation of 

out-of-tangential behaviour during numerical analysis. In contrast, inflation 

generates multi-axis strain, including relatively large tangential strains. The isolation 

of material behaviour through multi-objective experimental fitting was utilised in 

Whitford et al. (2015) and is again utilised in this study. In addition to this isolation of 

anisotropic stiff ness calibration the 3 diff erent loading rates allow the simultaneous 

calibration of viscoelastic parameters. 
 
The external parameters (ζ, χ) describing the local and global variation in fibril distri-

bution and the internal parameters (C10, D) which describe the stiff ness of the matrix 

and the volume change are unaff ected by the introduction of the internal variables 

which relate to the viscoelastic behaviour. These values therefore remain as derived in 

Whitford et al. (2015). However the internal parameters (µ1,2, γ1,2) are intrinsically 

combined with the viscoelastic parameters in the partial diff erential equations of the 

viscoelastic behaviour. Further, in earlier studies describing the anisotropic distribu-tion 

of collagen fibrils, for example (Pinsky et al., 2005; Studer et al., 2010; Whitford et al., 

2015), the material parameters were derived to define the hyperelastic response at a 

non-equilibrium state. The inclusion of the viscoelastic term in the fibril repre-sentation 

requires that parameters µ1,2, γ1,2 describing the fibril response are redefined such that 

they are intended to represent the equilibrium behaviour. The parameters which remain 

to be determined (µ1,2, γ1,2, βα, τα : α = 1, · · · , m), were derived using a multi-objective 

inverse analysis procedure. This optimisation process used a combina-tion of bespoke 

software and the optimisation software HEEDS (Red Cedar Technology, Michigan, 

USA). Within HEEDS, the SHERPA algorithm was utilised. This algorithm incorporates 

Monte Carlo sampling; this ensured that the analysis did not stop at local minima and 

that the resulting values were unique and robust. The objectives were to reduce the 

root-mean square (RMS) errors between the characteristic experiment results for 

corneal shear and inflation and their respective numerical simulations. In the study by 

Whitford et al. (2015) the parameters defining shear behaviour could be derived 

independently as the parameters defining tangential stiff ness had no influence on this 

behaviour. However, due to the necessary approximation that the viscoelastic 
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behaviour of the interlamellae fibrils is the same as the lamellae fibrils the viscoelastic 

parameters for both family of fibrils require simultaneous derivation. The constitutive 

model above has been expressed for multiple orders of viscoelastic behaviour which 

can be represented through the use of the α term (α = 1, · · · , m). The derivation 

process for material parameters included trials to determine the appropriate value for m. 

 
 
 
 
 
Results 
 
 
Numerical simulations were fitted to characteristic experimental data (Figure 2). Ini-tial 

trials were conducted utilising a first-order viscoelastic model during which a root-mean-

square error (RMS) for the age group 80−95 years of 4% of the total deformation 

simulated (200 − 550 µm) was achieved. However, with decreasing age, the RMS in-

creased to 5% for age group 50 − 65; the RMS for shear inflation was 3%. The fitting 

trend between age groups resulted in overestimation of displacement at low IOP and 

underestimation at higher IOP for the 50 − 65 age groups with a reversal of this trend 

when representing the 80 − 95 age-group. Inverse analysis trials to derive material pa-

rameters were also conducted on a second-order viscoelastic model. For these separate 

trials the RMS for all age-groups and loading-rates of inflation simulations and shear 

was less than 3%. The greatest error (***%) was in the youngest age group. 
 
Parameters of the proposed model have been simultaneously determined to represent 

characteristic shear and inflation responses across 3 diff erent loading rates and for 3 age 

groups (Table 1 and Figure 3). As described above, during the multiple iterations of analysis 

both γ2 and µ2, governing the equilibrium behaviour of ILC fibrils, were free to optimise. 

However, the output of the procedures consistently provided values within 0.05% of each 

other. Due to this non-significant diff erence, results have been provided based on the mean 

of these values and are therefore constant with age. Parameters γ1, 

µ1, β1 and β2 are non-dimensional, γ1 decreases, and µ1, β1 and β2 increase, with age.  
τ1 and τ2 have units of seconds and increase with age. 
 
Stiff ness varies directionally and by location across the entire cornea as previously 

described. Figure 4 provides the stiff ness relationships at selected discrete 

locations 
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Figure 2: Characteristic experimental data and results of numerical simulation: (a) 
corneal inflation, 37.5 mmHg/min; (b) corneal inflation, 3.75 mmHg/min; (c) corneal 
shear, 10%/min deformation 
 
 
 
 
Table 1: Numerical parameters derived for the constitutive model describing the 
anisotropic, viscoelastic and hyperelastic corneal behaviour from 50 to 95 years-of-age 
 

Parameter Value 
  

D (-) 10−5 

C10 (-) 0.009 
µ2 (-) 3.85 
γ2 (-) 7.42 × 10

−6 
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Figure 3: Numerical parameters (µ1(a), γ1(b), β1(c), τ1(d), β2(e) and τ2(f )) derived 
for the constitutive model describing the anisotropic, viscoelastic and hyperelastic 
corneal behaviour from 50 to 95 years-of-age. Bar chart provides the discrete values 
derived for the best fit with each age group. Other numerical parameters are 
constant with age and are presented in Table 1. 
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and directions across the cornea and varying strain rates. Figures 4a-c provide the 

hyperelastic stress-strain relationships on the tangential plane of the cornea at 0.5% 

and 5%/min strain. Consistently the higher strain-rate results in higher stiff ness 

when compared to the same location and direction. The greatest stiff ness is 

observed circum-ferentially at the limbus. Of the stiff ness relationships presented, 

the lowest stiff ness is in the diagonal direction at the corneal pole. Figure 4d 

provides the linear stress-strain relationship under shear at 10%/min, where this 

strain-rate relates to translational motion of the top surface of the cornea in relation 

to the lower surface with respect to its thickness. Figure 4e highlights the tangent 

modulus at 2% strain and Figure 4f presents the shear stiff ness. From figures 4e & 

4f it is clear that the shear stiff ness is significantly less than tangential stiff ness at 

31.5 kPa compared to the range presented across the cornea for tangential 

stiff ness, 370 − 1738 kPa. At the presented strain the strain-rate of 5%/min is 

almost double that at 0.5%/min for the respective location and direction. 

 
 
Discussion 
 
 
Within this study, a numerical representation of corneal microstucture has been de-

veloped within a continuum framework and applied to FEA. The model was applied to an 

extensive experimental database to obtain numerical relationships which describe 

regional variation of collagen density and anisotropy; the lamellae and ILC stiff ness; the 

stiff ness variation with age; strain-rate dependent viscoelastic behaviour; and the 

viscoelastic variation with age (density and anisotropy being described in earlier studies 

such as Whitford et al. (2015)). As in Whitford et al. (2015), density and anisotropic 

distribution of fibrils could not be observed or modelled with respect to age. It was 

suggested in that earlier study that variation in stiff ness with age could be a function of 

fibril behaviour, not arrangement. This hypothesis is expanded and reinforced in the 

current study due to the ability of the model to accurately and simultaneously represent 

age-related stiff ening and age-related viscoelasticity changes without the need to 

change mircostructural arrangement representation. 
 
The results of the calibration of the new constitutive model which has been presented 
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Figure 4: Material stiff ness relationships representing characteristic behaviour of a 
87 year old: (a-c) regional and directional specific stress-strain behaviour obtained 
parallel to the tangent plane; (d) stress-strain relationship representing shear 
behaviour (note the diff erent scale on the stress axis compared with plots (a-c)); (e) 
tangent modulus for stress-strain relationships 1-12; (f ) shear modulus. Values 
represent the stiff ness at 0.02 logarithmic strain.  
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here is the relationship between viscoelastic behaviour and age. Previous presentations 

of the cornea’s strain-rate dependent stiff ness have not been able to isolate the age-

related stiff ening from the age-related viscoelastic changes. In the new constitutive 

model, parameters defining the viscoelastic behaviour, β and τ, define the initial stage of 

non-equilibrium behaviourincluding the rate of decay of the non-equilibrium proportion. It 

has been shown that both the rate of decay and initial proportion increase with age. 

However, during trials it was found that a second contribution to viscoelasticity was 

required to provide a reasonable representation particularly in the youngest age-group, 

this contribution to viscoelasticity tended to zero in the age-group 80 − 95 years-of-age. 

Such a finding may be of increased importance where the application of high-speed 

techniques, such as non-contact tonometry, are utilised to determine ocular behaviour 

as this second contribution had a dissipation period of ≈ 2 seconds for 50 − 65 year olds. 
 
The model which has been presented here introduces a viscoelastic constituent to the 

model presented by Whitford et al. (2015). That model attributed the regional and 

anisotropic distribution of stiff ness to fibril density and arrangement. In this model the 

viscoelasticity decays with time (t → ∞), with its initial contribution being pro-portional to 

the behaviour of the fibrils. This is a potentially inaccurate assumption as the 

viscoelastic behaviour could have contributions from the matrix components of the 

stroma. However, these components have been shown to have relatively low stiff ness 

and therefore it is suggested that inaccuracies in this assumption would not lead to large 

inaccuracies in the overall behaviour of the model. 
 
The intention, and potential capacity, of this constitutive model is that exclusion of 

the viscoelastic material component provides a model of the equilibrium state of the 

material. However, it is not possible to directly derive the equilibrium behaviour from 

the material parameters which have been presented here. This fact is due to the 

limita-tions of the fitting procedure which was limited to three loading rates (two 

inflation and one shear). The material parameters which have been presented are 

only valid within the strain-rates from which they were derived and direct derivation 

of the equilibrium would require extrapolation. 
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responses. Where (1) represents dilation, (2) describes the isotropic matrix distortion response in 

both tension and compression stiff ness, (3) activated only under tensile strain, represents the 

anisotropic and regional variation of collagen fibrils. 
 

	


