1,290 research outputs found

    Geographic Gossip: Efficient Averaging for Sensor Networks

    Full text link
    Gossip algorithms for distributed computation are attractive due to their simplicity, distributed nature, and robustness in noisy and uncertain environments. However, using standard gossip algorithms can lead to a significant waste in energy by repeatedly recirculating redundant information. For realistic sensor network model topologies like grids and random geometric graphs, the inefficiency of gossip schemes is related to the slow mixing times of random walks on the communication graph. We propose and analyze an alternative gossiping scheme that exploits geographic information. By utilizing geographic routing combined with a simple resampling method, we demonstrate substantial gains over previously proposed gossip protocols. For regular graphs such as the ring or grid, our algorithm improves standard gossip by factors of nn and n\sqrt{n} respectively. For the more challenging case of random geometric graphs, our algorithm computes the true average to accuracy ϵ\epsilon using O(n1.5lognlogϵ1)O(\frac{n^{1.5}}{\sqrt{\log n}} \log \epsilon^{-1}) radio transmissions, which yields a nlogn\sqrt{\frac{n}{\log n}} factor improvement over standard gossip algorithms. We illustrate these theoretical results with experimental comparisons between our algorithm and standard methods as applied to various classes of random fields.Comment: To appear, IEEE Transactions on Signal Processin

    Strongly Secure Communications Over the Two-Way Wiretap Channel

    Full text link
    We consider the problem of secure communications over the two-way wiretap channel under a strong secrecy criterion. We improve existing results by developing an achievable region based on strategies that exploit both the interference at the eavesdropper's terminal and cooperation between legitimate users. We leverage the notion of channel resolvability for the multiple-access channel to analyze cooperative jamming and we show that the artificial noise created by cooperative jamming induces a source of common randomness that can be used for secret-key agreement. We illustrate the gain provided by this coding technique in the case of the Gaussian two-way wiretap channel, and we show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information Forensics and Security, Special Issue: "Using the Physical Layer for Securing the Next Generation of Communication Systems

    Causal Dependence Tree Approximations of Joint Distributions for Multiple Random Processes

    Full text link
    We investigate approximating joint distributions of random processes with causal dependence tree distributions. Such distributions are particularly useful in providing parsimonious representation when there exists causal dynamics among processes. By extending the results by Chow and Liu on dependence tree approximations, we show that the best causal dependence tree approximation is the one which maximizes the sum of directed informations on its edges, where best is defined in terms of minimizing the KL-divergence between the original and the approximate distribution. Moreover, we describe a low-complexity algorithm to efficiently pick this approximate distribution.Comment: 9 pages, 15 figure

    Capacity Gain from Two-Transmitter and Two-Receiver Cooperation

    Full text link
    Capacity improvement from transmitter and receiver cooperation is investigated in a two-transmitter, two-receiver network with phase fading and full channel state information available at all terminals. The transmitters cooperate by first exchanging messages over an orthogonal transmitter cooperation channel, then encoding jointly with dirty paper coding. The receivers cooperate by using Wyner-Ziv compress-and-forward over an analogous orthogonal receiver cooperation channel. To account for the cost of cooperation, the allocation of network power and bandwidth among the data and cooperation channels is studied. It is shown that transmitter cooperation outperforms receiver cooperation and improves capacity over non-cooperative transmission under most operating conditions when the cooperation channel is strong. However, a weak cooperation channel limits the transmitter cooperation rate; in this case receiver cooperation is more advantageous. Transmitter-and-receiver cooperation offers sizable additional capacity gain over transmitter-only cooperation at low SNR, whereas at high SNR transmitter cooperation alone captures most of the cooperative capacity improvement.Comment: Accepted for publication in IEEE Transactions on Information Theor

    Room temperature photonic crystal defect lasers at near-infrared wavelengths in InGaAsP

    Get PDF
    Room temperature lasing from optically pumped single defects in a two-dimensional (2-D) photonic bandgap (PBG) crystal is demonstrated. The high-Q optical microcavities are formed by etching a triangular array of air holes into a half-wavelength thick multiquantum-well waveguide. Defects in the 2-D photonic crystal are used to support highly localized optical modes with volumes ranging from 2 to 3 (lambda/2n)(3). Lithographic tuning of the air hole radius and the lattice spacing are used to match the cavity wavelength to the quantum-well gain peak, as well as to increase the cavity Q. The defect lasers were pumped with 10-30 ns pulses of 0.4-1% duty cycle. The threshold pump power was 1.5 mW (approximate to 500 μW absorbed)

    Performance Analysis of MIMO-MRC in Double-Correlated Rayleigh Environments

    Full text link
    We consider multiple-input multiple-output (MIMO) transmit beamforming systems with maximum ratio combining (MRC) receivers. The operating environment is Rayleigh-fading with both transmit and receive spatial correlation. We present exact expressions for the probability density function (p.d.f.) of the output signal-to-noise ratio (SNR), as well as the system outage probability. The results are based on explicit closed-form expressions which we derive for the p.d.f. and c.d.f. of the maximum eigenvalue of double-correlated complex Wishart matrices. For systems with two antennas at either the transmitter or the receiver, we also derive exact closed-form expressions for the symbol error rate (SER). The new expressions are used to prove that MIMO-MRC achieves the maximum available spatial diversity order, and to demonstrate the effect of spatial correlation. The analysis is validated through comparison with Monte-Carlo simulations.Comment: 25 pages. Submitted to the IEEE Transactions on Communication

    Data management of on-line partial discharge monitoring using wireless sensor nodes integrated with a multi-agent system

    Get PDF
    On-line partial discharge monitoring has been the subject of significant research in previous years but little work has been carried out with regard to the management of on-site data. To date, on-line partial discharge monitoring within a substation has only been concerned with single plant items, so the data management problem has been minimal. As the age of plant equipment increases, so does the need for condition monitoring to ensure maximum lifespan. This paper presents an approach to the management of partial discharge data through the use of embedded monitoring techniques running on wireless sensor nodes. This method is illustrated by a case study on partial discharge monitoring data from an ageing HVDC reactor

    An Energy and Performance Exploration of Network-on-Chip Architectures

    Get PDF
    In this paper, we explore the designs of a circuit-switched router, a wormhole router, a quality-of-service (QoS) supporting virtual channel router and a speculative virtual channel router and accurately evaluate the energy-performance tradeoffs they offer. Power results from the designs placed and routed in a 90-nm CMOS process show that all the architectures dissipate significant idle state power. The additional energy required to route a packet through the router is then shown to be dominated by the data path. This leads to the key result that, if this trend continues, the use of more elaborate control can be justified and will not be immediately limited by the energy budget. A performance analysis also shows that dynamic resource allocation leads to the lowest network latencies, while static allocation may be used to meet QoS goals. Combining the power and performance figures then allows an energy-latency product to be calculated to judge the efficiency of each of the networks. The speculative virtual channel router was shown to have a very similar efficiency to the wormhole router, while providing a better performance, supporting its use for general purpose designs. Finally, area metrics are also presented to allow a comparison of implementation costs

    Effect of dead space on avalanche speed

    Get PDF
    The effects of dead space (the minimum distance travelled by a carrier before acquiring enough energy to impact ionize) on the current impulse response and bandwidth of an avalanche multiplication process are obtained from a numerical model that maintains a constant carrier velocity but allows for a random distribution of impact ionization path lengths. The results show that the main mechanism responsible for the increase in response time with dead space is the increase in the number of carrier groups, which qualitatively describes the length of multiplication chains. When the dead space is negligible, the bandwidth follows the behavior predicted by Emmons but decreases as dead space increase

    The Effect of Eavesdropper's Statistics in Experimental Wireless Secret-Key Generation

    Full text link
    This paper investigates the role of the eavesdropper's statistics in the implementation of a practical secret-key generation system. We carefully conduct the information-theoretic analysis of a secret-key generation system from wireless channel gains measured with software-defined radios. In particular, we show that it is inaccurate to assume that the eavesdropper gets no information because of decorrelation with distance. We also provide a bound for the achievable secret-key rate in the finite key-length regime that takes into account the presence of correlated eavesdropper's observations. We evaluate this bound with our experimental gain measurements to show that operating with a finite number of samples incurs a loss in secret-key rate on the order of 20%.Comment: Submitted to the IEEE Transactions on Information Forensics and Securit
    corecore