We consider the problem of secure communications over the two-way wiretap
channel under a strong secrecy criterion. We improve existing results by
developing an achievable region based on strategies that exploit both the
interference at the eavesdropper's terminal and cooperation between legitimate
users. We leverage the notion of channel resolvability for the multiple-access
channel to analyze cooperative jamming and we show that the artificial noise
created by cooperative jamming induces a source of common randomness that can
be used for secret-key agreement. We illustrate the gain provided by this
coding technique in the case of the Gaussian two-way wiretap channel, and we
show significant improvements for some channel configurations.Comment: 11 pages, 7 figures, submitted to IEEE Transactions on Information
Forensics and Security, Special Issue: "Using the Physical Layer for Securing
the Next Generation of Communication Systems