9 research outputs found

    Androgen Receptors in Epithelial Cells Regulate Thymopoiesis and Recent Thymic Emigrants in Male Mice

    Get PDF
    Androgens have profound effects on T cell homeostasis, including regulation of thymic T lymphopoiesis (thymopoiesis) and production of recent thymic emigrants (RTEs), i. e., immature T cells that derive from the thymus and continue their maturation to mature naive T cells in secondary lymphoid organs. Here we investigated the androgen target cell for effects on thymopoiesis and RTEs in spleen and lymph nodes. Male mice with a general androgen receptor knockout (G-ARKO), T cell-specific (T-ARKO), or epithelial cell-specific (E-ARKO) knockout were examined. G-ARKO mice showed increased thymus weight and increased numbers of thymic T cell progenitors. These effects were not T cell-intrinsic, since T-ARKO mice displayed unaltered thymus weight and thymopoiesis. In line with a role for thymic epithelial cells (TECs), E-ARKO mice showed increased thymus weight and numbers of thymic T cell progenitors. Further, E-ARKO mice had more CD4(+)and CD8(+)T cells in spleen and an increased frequency of RTEs among T cells in spleen and lymph nodes. Depletion of the androgen receptor in epithelial cells was also associated with a small shift in the relative number of cortical (reduced) and medullary (increased) TECs and increased CCL25 staining in the thymic medulla, similar to previous observations in castrated mice. In conclusion, we demonstrate that the thymic epithelium is a target compartment for androgen-mediated regulation of thymopoiesis and consequently the generation of RTEs

    Physiological levels of estradiol limit murine osteoarthritis progression

    Get PDF
    Among patients with knee osteoarthritis (OA), postmenopausal women are overrepresented. The purpose of this study was to determine whether deficiency of female sex steroids affects OA progression and to evaluate the protective effect of treatment with a physiological dose of 17β-estradiol (E2) on OA progression using a murine model. Ovariectomy (OVX) of female mice was used to mimic a postmenopausal state. OVX or sham-operated mice underwent surgery for destabilization of the medial meniscus (DMM) to induce OA. E2 was administered in a pulsed manner for 2 and 8 weeks. OVX of OA mice did not influence the cartilage phenotype or synovial thickness, while both cortical and trabecular subchondral bone mineral density (BMD) decreased after OVX compared with sham-operated mice at 8 weeks post-DMM surgery. Additionally, OVX mice displayed decreased motor activity, reduced threshold of pain sensitivity, and increased number of T cells in the inguinal lymph nodes compared to sham-operated mice 2 weeks after OA induction. Eight weeks of treatment with E2 prevented cartilage damage and thickening of the synovium in OVX OA mice. The motor activity was improved after E2 replacement at the 2 weeks time point, which was also associated with lower pain sensitivity in the OA paw. E2 treatment protected against OVX-induced loss of subchondral trabecular bone. The number of T cells in the inguinal lymph nodes was reduced by E2 treatment after 8 weeks. This study demonstrates that treatment with a physiological dose of E2 exerts a protective role by reducing OA symptoms. © 2022 The authors Published by Bioscientifica Ltd.</p

    Roles of transactivating functions 1 and 2 of estrogen receptor-α in bone

    No full text
    The bone-sparing effect of estrogen is primarily mediated via estrogen receptor-α (ERα), which stimulates target gene transcription through two activation functions (AFs), AF-1 in the N-terminal and AF-2 in the ligand binding domain. To evaluate the role of ERα AF-1 and ERα AF-2 for the effects of estrogen in bone in vivo, we analyzed mouse models lacking the entire ERα protein (ERα−/−), ERα AF-1 (ERαAF-10), or ERα AF-2 (ERαAF-20). Estradiol (E2) treatment increased the amount of both trabecular and cortical bone in ovariectomized (OVX) WT mice. Neither the trabecular nor the cortical bone responded to E2 treatment in OVX ERα−/− or OVX ERαAF-20 mice. OVX ERαAF-10 mice displayed a normal E2 response in cortical bone but no E2 response in trabecular bone. Although E2 treatment increased the uterine and liver weights and reduced the thymus weight in OVX WT mice, no effect was seen on these parameters in OVX ERα−/− or OVX ERαAF-20 mice. The effect of E2 in OVX ERαAF-10 mice was tissue-dependent, with no or weak E2 response on thymus and uterine weights but a normal response on liver weight. In conclusion, ERα AF-2 is required for the estrogenic effects on all parameters evaluated, whereas the role of ERα AF-1 is tissue-specific, with a crucial role in trabecular bone and uterus but not cortical bone. Selective ER modulators stimulating ERα with minimal activation of ERα AF-1 could retain beneficial actions in cortical bone, constituting 80% of the skeleton, while minimizing effects on reproductive organs

    B. Sprachwissenschaft.

    No full text
    corecore