2,802 research outputs found

    Earthshine as an Illumination Source at the Moon

    Full text link
    Earthshine is the dominant source of natural illumination on the surface of the Moon during lunar night, and at locations within permanently shadowed regions that never receive direct sunlight. As such, earthshine may enable the exploration of areas of the Moon that are hidden from solar illumination. The heat flux from earthshine may also influence the transport and cold trapping of volatiles present in the very coldest areas. In this study, Earth's spectral radiance at the Moon is examined using a suite of Earth spectral models created using the Virtual Planetary Laboratory (VPL) three dimensional modeling capability. At the Moon, the broadband, hemispherical irradiance from Earth near 0 phase is approximately 0.15 watts per square meter, with comparable contributions from solar reflectance and thermal emission. Over the simulation timeframe, spanning two lunations, Earth's thermal irradiance changes less than a few mW per square meter as a result of cloud variability and the south-to-north motion of sub-observer position. In solar band, Earth's diurnally averaged light curve at phase angles < 60 degrees is well fit using a Henyey Greenstein integral phase function. At wavelengths > 0.7 microns, near the well known vegetation "red edge", Earth's reflected solar radiance shows significant diurnal modulation as a result of the longitudinal asymmetry in projected landmass, as well as from the distribution of clouds. A simple formulation with adjustable coefficients is presented for estimating Earth's hemispherical irradiance at the Moon as a function of wavelength, phase angle and sub-observer coordinates. It is demonstrated that earthshine is sufficiently bright to serve as a natural illumination source for optical measurements from the lunar surface.Comment: 27 pages, 15 figures, 1 tabl

    Damage identification in a concrete beam using curvature difference ratio

    Get PDF
    Previous studies utilising changes in mode shape or curvature to locate damage rely on the fact that the greatest change occurs around the defect. However, in concrete beams this fact is undermined due to the nature of the defect as distributed multi-site cracks. In addition, differences in mode shape and curvature as ways to locate the damage is unstable because of occurrence of modal nodes and inflection points. In this paper, one interesting solution to this problem is being tested by establishing a new non-dimensional expression designated the 'Curvature Difference Ratio (CDR)'. This parameter exploits the ratio of differences in curvature of a specific mode shape for a damaged stage and another reference stage. The expression CDR is reasonably used to locate the damage and estimate the dynamic bending stiffness in a successively loaded 6m concrete beam. Results obtained by the proposed technique are tested and validated with a case study results done by Ren and De Roeck [1] also by Maeck and De Roeck [2]. Another contribution of this work is that relating changes in vibration properties to the design bending moment at beam sections as defined in Eurocode 2 specifications [3]. Linking between a beam section condition and the change in vibration data will help to give a better comprehension on the beam condition than the applied load

    Discovery and Characterization of a Caustic Crossing Microlensing Event in the SMC

    Full text link
    We present photometric observations and analysis of the second microlensing event detected towards the Small Magellanic Cloud (SMC), MACHO Alert 98-SMC-1. This event was detected early enough to allow intensive observation of the lightcurve. These observations revealed 98-SMC-1 to be the first caustic crossing, binary microlensing event towards the Magellanic Clouds to be discovered in progress. Frequent coverage of the evolving lightcurve allowed an accurate prediction for the date of the source crossing out of the lens caustic structure. The caustic crossing temporal width, along with the angular size of the source star, measures the proper motion of the lens with respect to the source, and thus allows an estimate of the location of the lens. Lenses located in the Galactic halo would have a velocity projected to the SMC of v^hat ~1500 km/s, while an SMC lens would typically have v^hat ~60 km/s. We have performed a joint fit to the MACHO/GMAN data presented here, including recent EROS data of this event. These joint data are sufficient to constrain the time for the lens to move an angle equal to the source angular radius; 0.116 +/- 0.010 days. We estimate a radius for the lensed source of 1.4 +/- 0.1 R_sun. This yields a projected velocity of v^hat = 84 +/- 9 km/s. Only 0.15% of halo lenses would be expected to have a v^hat value at least as small as this, while 31% of SMC lenses would be expected to have v^hat as large as this. This implies that the lensing system is more likely to reside in the SMC than in the Galactic halo.Comment: 16 pages, including 3 tables and 3 figures; submitted to The Astrophysical Journa

    Hole doping dependences of the magnetic penetration depth and vortex core size in YBa2Cu3Oy: Evidence for stripe correlations near 1/8 hole doping

    Full text link
    We report on muon spin rotation measurements of the internal magnetic field distribution n(B) in the vortex solid phase of YBa2Cu3Oy (YBCO) single crystals, from which we have simultaneously determined the hole doping dependences of the in-plane Ginzburg-Landau (GL) length scales in the underdoped regime. We find that Tc has a sublinear dependence on 1/lambda_{ab}^2, where lambda_{ab} is the in-plane magnetic penetration depth in the extrapolated limits T -> 0 and H -> 0. The power coefficient of the sublinear dependence is close to that determined in severely underdoped YBCO thin films, indicating that the same relationship between Tc and the superfluid density is maintained throughout the underdoped regime. The in-plane GL coherence length (vortex core size) is found to increase with decreasing hole doping concentration, and exhibit a field dependence that is explained by proximity-induced superconductivity on the CuO chains. Both the magnetic penetration depth and the vortex core size are enhanced near 1/8 hole doping, supporting the belief by some that stripe correlations are a universal property of high-Tc cuprates.Comment: 12 pages, 13 figure

    Predictive Power of Strong Coupling in Theories with Large Distance Modified Gravity

    Get PDF
    We consider theories that modify gravity at cosmological distances, and show that any such theory must exhibit a strong coupling phenomenon, or else it is either inconsistent or is already ruled out by the solar system observations. We show that all the ghost-free theories that modify dynamics of spin-2 graviton on asymptotically flat backgrounds, automatically have this property. Due to the strong coupling effect, modification of the gravitational force is source-dependent, and for lighter sources sets in at shorter distances. This universal feature makes modified gravity theories predictive and potentially testable not only by cosmological observations, but also by precision gravitational measurements at scales much shorter than the current cosmological horizon. We give a simple parametrization of consistent large distance modified gravity theories and their predicted deviations from the Einsteinian metric near the gravitating sources.Comment: 12 pages, Latex, to be published in New Journal of Physic

    The Pan-STARRS1 Photometric System

    Full text link
    The Pan-STARRS1 survey is collecting multi-epoch, multi-color observations of the sky north of declination -30 deg to unprecedented depths. These data are being photometrically and astrometrically calibrated and will serve as a reference for many other purposes. In this paper we present our determination of the Pan-STARRS photometric system: gp1, rp1, ip1, zp1, yp1, and wp1. The Pan-STARRS photometric system is fundamentally based on the HST Calspec spectrophotometric observations, which in turn are fundamentally based on models of white dwarf atmospheres. We define the Pan-STARRS magnitude system, and describe in detail our measurement of the system passbands, including both the instrumental sensitivity and atmospheric transmission functions. Byproducts, including transformations to other photometric systems, galactic extinction, and stellar locus are also provided. We close with a discussion of remaining systematic errors.Comment: 39 pages, 9 figures, machine readable table of bandpasses, accepted for publication in Ap
    corecore