10,743 research outputs found

    Gravitational Collapse with a Cosmological Constant

    Get PDF
    We consider the effect of a positive cosmological constant on spherical gravitational collapse to a black hole for a few simple, analytic cases. We construct the complete Oppenheimer-Snyder-deSitter (OSdS) spacetime, the generalization of the Oppenheimer-Snyder solution for collapse from rest of a homogeneous dust ball in an exterior vacuum. In OSdS collapse, the cosmological constant may affect the onset of collapse and decelerate the implosion initially, but it plays a diminishing role as the collapse proceeds. We also construct spacetimes in which a collapsing dust ball can bounce, or hover in unstable equilibrium, due to the repulsive force of the cosmological constant. We explore the causal structure of the different spacetimes and identify any cosmological and black hole event horizons which may be present.Comment: 7 pages, 10 figures; To appear in Phys. Rev.

    Intraindividual reaction time variability is malleable: feedback- and education-related reductions in variability with age

    Get PDF
    Intraindividual variability (IIV) in trial-to-trial reaction time (RT) is a robust and stable within-person marker of aging. However, it remains unknown whether IIV can be modulated experimentally. In a sample of healthy younger and older adults, we examined the effects of motivation- and performance-based feedback, age, and education level on IIV in a choice RT task (four blocks over 15 min). We found that IIV was reduced with block-by-block feedback, particularly for highly educated older adults. Notably, the baseline difference in IIV levels between this group and the young adults was reduced by 50% by the final testing block, this advantaged older group had improved such that they were statistically indistinguishable from young adults on two of three preceding testing blocks. Our findings confirmed that response IIV is indeed modifiable, within mere minutes of feedback and testing

    Chaos and localization in the wavefunctions of complex atoms NdI, PmI and SmI

    Full text link
    Wavefunctions of complex lanthanide atoms NdI, PmI and SmI, obtained via multi-configuration Dirac-Fock method, are analyzed for density of states in terms of partial densities, strength functions (Fk(E)F_k(E)), number of principal components (ξ2(E)\xi_2(E)) and occupancies (\lan n_\alpha \ran^E) of single particle orbits using embedded Gaussian orthogonal ensemble of one plus two-body random matrix ensembles [EGOE(1+2)]. It is seen that density of states are in general multi-modal, Fk(E)F_k(E)'s exhibit variations as function of the basis states energy and ξ2(E)\xi_2(E)'s show structures arising from localized states. The sources of these departures from EGOE(1+2) are investigated by examining the partial densities, correlations between Fk(E)F_k(E), ξ2(E)\xi_2(E) and \lan n_\alpha \ran^E and also by studying the structure of the Hamiltonian matrices. These studies point out the operation of EGOE(1+2) but at the same time suggest that weak admixing between well separated configurations should be incorporated into EGOE(1+2) for more quantitative description of chaos and localization in NdI, PmI and SmI.Comment: There are 9 figure

    Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

    Get PDF
    In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.Comment: 4 pages, 3 figure

    Tenodesis Grasp Emulator: Kinematic Assessment of Wrist-Driven Orthotic Control

    Full text link
    Wrist-driven orthotics have been designed to assist people with C6-7 spinal cord injury, however, the kinematic constraint imposed by such a control strategy can impede mobility and lead to abnormal body motion. This study characterizes body compensation using the novel Tenodesis Grasp Emulator, an adaptor orthotic that allows for the investigation of tenodesis grasping in subjects with unimpaired hand function. Subjects perform a series of grasp-and-release tasks in order to compare normal (test control) and constrained wrist-driven modes, showing significant compensation as a result of the constraint. A motor-augmented mode is also compared against traditional wrist-driven operation, to explore the potential role of hybrid human-robot control. We find that both the passive wrist-driven and motor-augmented modes fulfill different roles throughout various tasks tested. Thus, we conclude that a flexible control scheme that can alter intervention based on the task at hand holds the potential to reduce compensation in future work.Comment: 7 pages, 11 figures, submitted to International Conference on Robotics and Automation (ICRA) 2022. Video Supplement: https://youtu.be/NIgKg5R3Ro

    Width and Partial Widths of Unstable Particles in the Light of the Nielsen Identities

    Full text link
    Fundamental properties of unstable particles, including mass, width, and partial widths, are examined on the basis of the Nielsen identities (NI) that describe the gauge dependence of Green functions. In particular, we prove that the pole residues and associated definitions of branching ratios and partial widths are gauge independent to all orders. A simpler, previously discussed definition of branching ratios and partial widths is found to be gauge independent through next-to-next-to-leading order. It is then explained how it may be modified in order to extend the gauge independence to all orders. We also show that the physical scattering amplitude is the most general combination of self-energy, vertex, and box contributions that is gauge independent for arbitrary s, discuss the analytical properties of the NI functions, and exhibit explicitly their one-loop expressions in the Z-gamma sector of the Standard Model.Comment: 20 pages (Latex); minor changes included, accepted for publication in Phys. Rev.
    corecore