21 research outputs found

    A novel human iPSC model of COL4A1/A2 small vessel disease unveils a key pathogenic role of matrix metalloproteinases

    Get PDF
    Cerebral small vessel disease (SVD) affects the small vessels in the brain and is a leading cause of stroke and dementia. Emerging evidence supports a role of the extracellular matrix (ECM), at the interface between blood and brain, in the progression of SVD pathology, but this remains poorly characterized. To address ECM role in SVD, we developed a co-culture model of mural and endothelial cells using human induced pluripotent stem cells from patients with COL4A1/A2 SVD-related mutations. This model revealed that these mutations induce apoptosis, migration defects, ECM remodeling, and transcriptome changes in mural cells. Importantly, these mural cell defects exert a detrimental effect on endothelial cell tight junctions through paracrine actions. COL4A1/A2 models also express high levels of matrix metalloproteinases (MMPs), and inhibiting MMP activity partially rescues the ECM abnormalities and mural cell phenotypic changes. These data provide a basis for targeting MMP as a therapeutic opportunity in SVD.</p

    Global proteomic analysis of extracellular matrix in mouse and human brain highlights relevance to cerebrovascular disease

    Get PDF
    The extracellular matrix (ECM) is a key interface between the cerebrovasculature and adjacent brain tissues. Deregulation of the ECM contributes to a broad range of neurological disorders. However, despite this importance, our understanding of the ECM composition remains very limited mainly due to difficulties in its isolation. To address this, we developed an approach to extract the cerebrovascular ECM from mouse and human post-mortem normal brain tissues. We then used mass spectrometry with off-line high-pH reversed-phase fractionation to increase the protein detection. This identified more than 1000 proteins in the ECM-enriched fraction, with > 66% of the proteins being common between the species. We report 147 core ECM proteins of the human brain vascular matrisome, including collagens, laminins, fibronectin and nidogens. We next used network analysis to identify the connection between the brain ECM proteins and cerebrovascular diseases. We found that genes related to cerebrovascular diseases, such as COL4A1, COL4A2, VCAN and APOE were significantly enriched in the cerebrovascular ECM network. This provides unique mechanistic insight into cerebrovascular disease and potential drug targets. Overall, we provide a powerful resource to study the functions of brain ECM and highlight a specific role for brain vascular ECM in cerebral vascular disease

    A Potential New Pathway for Staphylococcus aureus Dissemination: The Silent Survival of S. aureus Phagocytosed by Human Monocyte-Derived Macrophages

    Get PDF
    Although considered to be an extracellular pathogen, Staphylococcus aureus is able to invade a variety of mammalian, non-professional phagocytes and can also survive engulfment by professional phagocytes such as neutrophils and monocytes. In both of these cell types S. aureus promptly escapes from the endosomes/phagosomes and proliferates within the cytoplasm, which quickly leads to host cell death. In this report we show that S. aureus interacted with human monocyte-derived macrophages in a very different way to those of other mammalian cells. Upon phagocytosis by macrophages, S. aureus persisted intracellularly in vacuoles for 3–4 days before escaping into the cytoplasm and causing host cell lysis. Until the point of host cell lysis the infected macrophages showed no signs of apoptosis or necrosis and were functional. They were able to eliminate intracellular staphylococci if prestimulated with interferon-γ at concentrations equivalent to human therapeutic doses. S. aureus survival was dependent on the alternative sigma factor B as well as the global regulator agr, but not SarA. Furthermore, isogenic mutants deficient in α-toxin, the metalloprotease aureolysin, protein A, and sortase A were efficiently killed by macrophages upon phagocytosis, although with different kinetics. In particular α-toxin was a key effector molecule that was essential for S. aureus intracellular survival in macrophages. Together, our data indicate that the ability of S. aureus to survive phagocytosis by macrophages is determined by multiple virulence factors in a way that differs considerably from its interactions with other cell types. S. aureus persists inside macrophages for several days without affecting the viability of these mobile cells which may serve as vehicles for the dissemination of infection

    What drives the Premium Labour Model, beta instability or human capital? Premium Model outperforms Premium Labour model?

    No full text
    We examine the Conditional Capital Asset Pricing Model of Jagannathan and Wang (1996) using UK data and develop a data driven measure of beta instability risk that is pertinent to the UK stock market. This measure is priced over all time periods covered in this study. In contrast to the view that the main part of the Jagannathan and Wang's model is the inclusion of human capital, however, we find that human capital remains insignificant in most tests. Our results revive the importance of beta instability risk in conditional CAPM of Jagannathan and Wang's model and suggest that the beta instability drives this model

    International employee identity structure and context, and impact on turnover intent

    No full text

    Transcriptomic Responses and Survival Mechanisms of Staphylococci to the Antimicrobial Skin Lipid Sphingosine

    No full text
    Sphingosines are antimicrobial lipids that form part of the innate barrier to skin colonization by microbes. Sphingosine deficiencies can result in increased epithelial infections by bacteria including Staphylococcus aureus. Recent studies have focused on the potential use of sphingosine resistance or its potential mechanisms. We used RNA-Seq to identify the common d-sphingosine transcriptomic response of the transient skin colonizer S. aureus and the dominant skin coloniser S. epidermidis. A common d-sphingosine stimulon was identified that included downregulation of the SaeSR two-component system (TCS) regulon and upregulation of both the VraSR TCS and CtsR stress regulons. We show that the PstSCAB phosphate transporter, and VraSR offer intrinsic resistance to d-sphingosine. Further, we demonstrate increased sphingosine resistance in these staphylococci evolves readily through mutations in genes encoding the FarE-FarR efflux/regulator proteins. The ease of selecting mutants with resistance to sphingosine may impact upon staphylococcal colonization of skin where the lipid is present and have implications with topical therapeutic applications
    corecore