3,430 research outputs found

    Addressing the Grand Challenge of atmospheric carbon dioxide: geologic sequestration vs. biological recycling

    Get PDF
    On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges

    Reconciling Grand Unification with Strings by Anisotropic Compactifications

    Get PDF
    We analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This construction is very much analogous to effective 5 dimensional orbifold GUT field theories. Our analysis assumes three fundamental scales, the string scale, \mstring, a compactification scale, \mc, and a mass scale for some of the vector-like exotics, \mex; the other exotics are assumed to get mass at \mstring. In the particular models analyzed, we show that gauge coupling unification is not possible with \mex = \mc and in fact we require \mex \ll \mc \sim 3 \times 10^{16} GeV. We find that about 10% of the parameter space has a proton lifetime (from dimension 6 gauge exchange) 1033yrτ(pπ0e+)1036yr10^{33} {\rm yr} \lesssim\tau(p\to \pi^0e^+) \lesssim 10^{36} {\rm yr}. The other 80% of the parameter space gives proton lifetimes below Super-K bounds. The next generation of proton decay experiments should be sensitive to the remaining parameter space.Comment: 36 pages and 5 figures, contains some new references and additional paragraph in conclusio

    Hybrid System for Enhancing Algal Growth using Vertical Membranes

    Get PDF
    A method for enhancing gas-to-liquid transfer rate and algal growth using vertical membranes suspended over a pond, wherein the membranes are formed of fibers. An aqueous solution is applied to the top edges of the membranes through a series of headers. The membranes are exposed to a stream of gas containing soluble gas species as the aqueous solution migrates downwardly through the membranes by virtue of gravity-assisted capillary action. The aqueous solution collects the soluble gases from the gas stream, thus promoting the growth of photosynthetic organisms on the membranes and in the pond. The membranes facilitate a gradual introduction of the aqueous solution into the pond at a preferred rate of about 1.3 gallons per minute per linear foot of membrane for optimizing the transfer soluble species from gaseous phase to aqueous phase without rapidly acidifying the pond and harming the phototrophic organisms

    Investigation of Anaerobic Digestion of the Aqueous Phase from Hydrothermal Carbonization of Mixed Municipal Solid Waste

    Get PDF
    In 2017, the United States Environmental Protection Agency (EPA) reported that Americans generated over 268 million tons of municipal solid waste (MSW). The majority (52%) of this waste ends up in landfills, which are the third largest source of anthropogenic methane emissions. Improvements in terms of waste management and energy production could be solved by integrating MSW processing with hydrothermal carbonization (HTC) and anaerobic digestion (AD) for converting organic carbon of MSW to fuels. The objectives of this study were to (a) investigate HTC experiments at varying temperatures and residence times (b) evaluate aqueous phase and solids properties, and (c) perform AD bench scale bottle test on the aqueous phase. A mixture of different feedstock representing MSW was used. HTC at 280 °C and 10 min yielded the highest total organic carbon (TOC) of 8.16 g/L with biogas yields of 222 mL biogas/g TOC. Results showed that AD of the aqueous phase from a mixed MSW feedstock is feasible. The integrated approach shows organic carbon recovery of 58% (hydrochar and biogas). This study is the first of its kind to investigate varying temperature and times for a heterogeneous feedstock (mixed MSW), and specifically evaluating HTC MSW aqueous phase anaerobic biodegradability

    Crop expansion and conservation priorities in tropical countries

    Get PDF
    Expansion of cropland in tropical countries is one of the principal causes of biodiversity loss, and threatens to undermine progress towards meeting the Aichi Biodiversity Targets. To understand this threat better, we analysed data on crop distribution and expansion in 128 tropical countries, assessed changes in area of the main crops and mapped overlaps between conservation priorities and cultivation potential. Rice was the single crop grown over the largest area, especially in tropical forest biomes. Cropland in tropical countries expanded by c. 48,000 km2 per year from 1999–2008. The countries which added the greatest area of new cropland were Nigeria, Indonesia, Ethiopia, Sudan and Brazil. Soybeans and maize are the crops which expanded most in absolute area. Other crops with large increases included rice, sorghum, oil palm, beans, sugar cane, cow peas, wheat and cassava. Areas of high cultivation potential—while bearing in mind that political and socio-economic conditions can be as influential as biophysical ones—may be vulnerable to conversion in the future. These include some priority areas for biodiversity conservation in tropical countries (e.g., Frontier Forests and High Biodiversity Wilderness Areas), which have previously been identified as having ‘low vulnerability’, in particular in central Africa and northern Australia. There are also many other smaller areas which are important for biodiversity and which have high cultivation potential (e.g., in the fringes of the Amazon basin, in the Paraguayan Chaco, and in the savanna woodlands of the Sahel and East Africa). We highlight the urgent need for more effective sustainability standards and policies addressing both production and consumption of tropical commodities, including robust land-use planning in agricultural frontiers, establishment of new protected areas or REDD+ projects in places agriculture has not yet reached, and reduction or elimination of incentives for land-demanding bioenergy feedstock

    Assessment and Applications of the Conversion of Chemical Energy to Mechanical Energy Using Model Rocket Engines

    Get PDF
    To provide the first-year engineering students with a hands-on experience in an engineering application using both chemistry and physics, this team project uses a set of chemical and physical energy concepts and MS Excel based analysis. The main objective of the project is to calculate how much of the potential maximum possible chemical energy is converted into propulsion when using model rocket engines with solid fuel. The secondary objective is to determine the effects of increasing conversion rates on the performance of a model rocket. The solid fuel or propellant used in common model rocket engines is black powder. Compared to composite and hybrid engines, engines with black powder are cheaper and easier to ignite. Affordability of this propellant has made it possible to test fire many engines of different sizes. In addition, solid model rocket engines provide a good analogy to solid rocket boosters used in some of today’s launch vehicles. Rockets are momentum engines, thus, it is unusual to consider them in terms of energy, but energy is felt by observers even in model rocket launches. Total impulse is the measure of momentum imparted to the vehicle and depends on several processes including the chemical energy of the propellant and the useful kinetic energy of the exhaust. The project centers around calculation of the total energy released by the combustion of the reactants in model rocket engines of various types (A through F). The propulsion energy is a small fraction of the total energy released during combustion where a significant part of the total is lost heat. Many students enjoyed this activity as they learned how to code several sets of chemical balance and physical energy equations using MS Excel. Each team wrote a detailed technical report that explains the overall project. They used field pictures and the graphs to illustrate various parts of the project. They also included an essay on alternative propulsion means to explore the outer Solar system and beyond. An anonymous learning survey was developed, implemented, and analyzed to assess the educational effect of this project. The survey results and anecdotal evidence show this was a good and a challenging learning experience that was also too demanding for some of the students

    Lipid Extraction From Spirulina sp. and Schizochytrium sp. Using Supercritical CO2 With Methanol

    Get PDF
    Microalgae are one of the most promising feedstocks for biodiesel production due to their high lipid content and easy farming. However, the extraction of lipids from microalgae is energy intensive and costly and involves the use of toxic organic solvents. Compared with organic solvent extraction, supercritical CO2 (SCCO2) has demonstrated advantages through lower toxicity and no solvent-liquid separation. Due to the nonpolar nature of SCCO2, polar organic solvents such as methanol may need to be added as a modifier in order to increase the extraction ability of SCCO2. In this paper, pilot scale lipid extraction using SCCO2 was studied on two microalgae species: Spirulina sp. and Schizochytrium sp. For each species, SCCO2 extraction was conducted on 200 g of biomass for 6 h. Methanol was added as a cosolvent in the extraction process based on a volume ratio of 4%. The results showed that adding methanol in SCCO2 increased the lipid extraction yield significantly for both species. Under an operating pressure of 4000 psi, the lipid extraction yields for Spirulina sp. and Schizochytrium sp. were increased by 80% and 72%, respectively. It was also found that a stepwise addition of methanol was more effective than a one-time addition. In comparison with Soxhlet extraction using methylene chloride/methanol (2:1, v/v), the methanol-SCCO2 extraction demonstrated its high effectiveness for lipid extraction. In addition, the methanol-SCCO2 system showed a high lipid extraction yield after increasing biomass loading fivefold, indicating good potential for scaling up this method. Finally, a kinetic study of the SCCO2 extraction process was conducted, and the results showed that methanol concentration in SCCO2 has the strongest influence on the lipid extraction yield

    Flow-Controlling Header

    Get PDF
    An apparatus and method for holding a membrane, screen or other flexible planar body in tension, while providing a conduit for water or other liquid to flow to the membrane being held. The membrane extends from inside a manifold body that carries the liquid, and the manifold body supports the membrane at one edge while the membrane is pulled in tension. Liquid pressure builds up inside the manifold body, preferably by entering a pressure chamber at the top of the manifold body. At a feeding pressure in the pressure chamber the liquid is distributed to the membrane for microbe growth. The liquid can be elevated to a higher, microbe-harvesting pressure by increasing the pressure in the pressure chamber, thereby deflecting a shim separating the pressure chamber from the membrane. The change in pressure is carried out by manually or automatically opening and closing a conventional water valve

    Investigation of Electrolytic Flocculation for Microalga Scenedesmus sp Using Aluminum and Graphite Electrodes

    Get PDF
    Electrolytic flocculation using non-sacrificial electrodes with flocculants added was studied on harvesting Scenedesmus sp. In order to optimize the operating conditions of the electrolytic flocculation process and to quantify the amount of flocculants added, aluminum electrodes were first used in the process. It was found that under optimal conditions, the microalgae removal efficiency using aluminum electrodes could reach 98.5%, while 34.2 mg L-1 of aluminum ions were released during the process. Different metal electrodes were also studied, but high microalgae removal efficiency was witnessed only using aluminum electrodes, indicating the influence of the aluminum ion in flocculation. When non-sacrificial graphite electrodes were used in the electrolytic flocculation process, the corresponding amount of aluminum sulfate was added so that the aluminum ion concentration in water was also equal to 34.2 mg L-1. The result showed that the microalgae removal efficiency of graphite electrodes could reach above 90% after aluminum sulfate was added. In contrast, using graphite electrodes alone and using the metal salt alone only yielded 22.9% and 7.1% of microalgae removal efficiency, respectively. These results indicated that the presence of metal ions is necessary in the electrolytic flocculation process. The energy consumption of the process was found to be 0.3 kW h m-3 or 0.88 kW h kg-1, which is considered to be low energy consumption. The total cost of the process, including energy and chemicals, was found to be $ 0.21 m-3, proving a cost competitive method in microalgae harvesting

    Apparatus and Method for Growing Biological Organisms for Fuel and Other Purposes

    Get PDF
    A bioreactor apparatus in which a container has sidewalls, a floor and a ceiling defining a chamber that contains a slurry of water, nutrients and photosynthetic microorganisms. A plurality of optical fibers, each of which has a first end disposed outside the chamber and a second end in the mixture. A light collector spaced from the container has light incident on it and focuses the light onto the first ends of the plurality of optical fibers, thereby permitting the light to be conveyed into the mixture to promote photosynthesis. At least one nozzle is in fluid communication with a source of gas, such as exhaust gas from a fossil-fuel burning power plant containing carbon dioxide. The nozzle is disposed in the mixture beneath the second ends of the optical fibers for injecting the gas into the mixture
    corecore