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We analyze gauge coupling unification in the context of heterotic strings on anisotropic orbifolds. This

construction is very much analogous to effective five-dimensional orbifold grand unified theory field

theories. Our analysis assumes three fundamental scales: the string scaleMS, a compactification scaleMC,

and a mass scale for some of the vectorlike exotics MEX; the other exotics are assumed to get mass at MS.

In the particular models analyzed, we show that gauge coupling unification is not possible with MEX ¼
MC, and in fact we require MEX � MC � 3� 1016 GeV. We find that about 10% of the parameter space

has a proton lifetime (from dimension six gauge exchange) 1033 yr & �ðp ! �0eþÞ & 1036 yr. The other

80% of the parameter space gives proton lifetimes below Super-Kamiokande bounds. The next generation

of proton decay experiments should be sensitive to the remaining parameter space.
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I. INTRODUCTION

Supersymmetric grand unification [1–6] is one of the
most attractive scenarios for beyond the standard model
physics. One can simultaneously explain the apparent uni-
fication of the electroweak and strong coupling constants
around 3� 1016 GeV, charge quantization, the conserva-
tion of baryon number minus lepton number (B-L), and
why quarks and leptons come in families. Nevertheless the
simplest four-dimensional supersymmetric (SUSY) grand
unified theories (GUTs) have some notable problems.
Spontaneously breaking the GUT symmetry requires sca-
lars in adjoint representations and complicated symmetry
breaking potentials. In addition, Higgs doublet-triplet split-
ting demands special treatment. Neither of these problems
is insurmountable, but it is difficult to imagine that these
special sectors can be derived from a more fundamental
theory. In addition, Super-Kamiokande (Super-K) bounds
on the proton lifetime place four-dimensional SUSY GUTs
‘‘under siege’’ [7,8]. Finally, in order to understand fer-
mion masses and mixing angles it is likely that additional
family symmetries may be needed.

In the early work within the framework of the weakly
coupled heterotic string it was argued for string unification,
as opposed to grand unification with an independent lower-
energy GUT breaking scale.1 Gauge couplings naturally
unify at the string scale with a unification scale2 of around
5� 1017 GeV [9–11]. Unfortunately the precision low-
energy data prefer a lower unification scale MGUT � 3�
1016 GeV. This tension between gravity and gauge cou-
pling unification has been termed the ‘‘factor of 20’’ prob-
lem with string unification [12]. Nevertheless string theory
has some very nice features; i.e. the E8 � E8 [or SO(32)]

symmetry of the weakly coupled heterotic string is easily
broken via an orbifold compactification of the extra 6 spa-
tial dimensions [13,14]. In addition, Higgs doublet-triplet
splitting is also easily accomplished by the same means
[15,16]. Significant progress was made early on in obtain-
ing standard-model-like theories using orbifolding and
Wilson lines to break the gauge symmetry [16–20].
More recently, it was realized that some of the problems

with SUSY GUTs could be solved by understanding our
low-energy physics in terms of an effective five- or six-
dimensional field theory in which one or two of the direc-
tions is compactified [21–30]. Typically one takes a five-
(six-) dimensional gauge theory and compactifies one
(two) of the directions on an orbifold. The geometry of
the orbifold admits solutions for higher-dimensional fields
which are localized on two or more branes and fields which
are free to propagate in the bulk. The former are called
‘‘brane’’ fields, the latter ‘‘bulk’’ fields. By assigning the
bulk fields boundary conditions along the fifth (and sixth)
direction(s), one can achieve GUT/SUSY breaking without
the large representations and complicated GUT breaking
potentials encountered in four-dimensional constructions.
In addition, placing the electroweak Higgs multiplet in the
bulk, Higgs doublet-triplet splitting can also be affected via
a judicious choice of boundary conditions. Generally, the
placement of the matter and the assignment of orbifold
parities is done in a bottom-up manner; one identifies
certain phenomenological features (e.g. suppressing dan-
gerous proton decay operators) and then chooses mass
scales, matter localization, and orbifold parities accord-
ingly. For example, one can keep b� �Yukawa unification
by placing the third family on an SU(5) brane or suppress
proton decay by placing the first two families in the bulk
[24]. Finally, four-dimensional SUSY GUTs require of
order 3% threshold correction at the GUT scale in order
to precisely fit the low-energy data [31]. Given a GUT
breaking sector, this correction must come from the spec-
trum of massive states with mass of orderMGUT. In orbifold

1In fact, it is difficult to get massless adjoints in the string
spectrum, needed for GUT symmetry breaking.

2Assuming SU(2) and SU(3) are represented at Kač-Moody
level k2 ¼ k3 ¼ 1 and the U(1) of hypercharge is normalized
with k1 ¼ 5=3.
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GUTs this correction comes from the Kaluza-Klein modes
between the compactification scaleMC and the cutoff scale
M�, with unification occurring at the cutoff. In fact, the
ratio M�=MC � 100 is determined by gauge coupling uni-
fication. The problem with orbifold GUT field theories,
however, is the necessity for a cutoff.

In Refs. [32–34], it was shown that effective orbifold
SUSY GUT field theories can be obtained by orbifold
compactifications of the heterotic string. These theories
provide an ultraviolet completion of orbifold GUT field
theories with a physical cutoff at the string scale. These are
so-called anisotropic orbifold theories with one or two
large extra dimensions (R ¼ M�1

C � lS ¼ M�1
S ). At low-

est order the gauge couplings unify at MS. Further, when
working within the framework of the weakly coupled
heterotic string, there is a very specific relationship be-
tween the strength of the GUT coupling and the strength of
gravity [see Eq. (2)]. Viewed in this manner, the factor of
20 turns into a factor of 400 when comparing to the
(experimentally measured) value of Newton’s constant.
This makes it clear that there need to be significant thresh-
old corrections (both logarithmic and power-law) in order
to match the low-energy data. In fact, important threshold
corrections are provided by Kaluza-Klein modes running
in loops. Their spectrum is calculable and often gives
nontrivial corrections to the running of the couplings
[21,22].

In this paper, we investigate ways to solve the ‘‘factor of
20’’ problem with heterotic string unification, within the
context of the orbifold GUT picture proposed in Refs. [32–
34].3 In order to make unification work, we find that we
generally need to introduce an intermediate scale MEX,
which is typically 2 or 3 orders of magnitude below the
compactification scale. When we impose the conditions
that MS >MC * MEX, we find a large number of solutions
for which unification works. Note the proton lifetime (from
dimension six operators) scales as the fourth power of MC.
Most solutions are excluded by proton decay; however, a
small number predict proton lifetimes (from dimension six
operators) that can be measured in future experiments.

We begin with a brief review of the stringy embedding of
orbifold GUTs [32–34] and a presentation of the models in
the ‘‘mini-landscape’’ search [36–40] in Sec. II. We focus
on two ‘‘benchmark’’ models from the mini-landscape
search in this analysis, called ‘‘model 1A’’ and ‘‘model 2’’
in Ref. [40]. Specific details of these models (the full
spectrum in four dimensions, etc.) can be found in
Tables I, II, III, IV, V, VI, VII, VIII, and IX in
Appendix C. The main result of our analysis is a detailed
examination of the parameter space which allows for uni-
fication and how this parameter space relates to proton
decay constraints from dimension six (and possibly dimen-

sion five) operators. This work is summarized in Sec. III.
Solutions consistent with gauge coupling unification are
found in Tables VII, VIII, and IX. In Sec. IV we check
whether any of our solutions are consistent with decou-
pling of exotics in supersymmetric vacua.

II. ORBIFOLD GUTS FROM STRING THEORY

In exploring gauge coupling unification in orbifold con-
structions, we focus on a class of models [36–40] that are
based on SU(6) gauge-Higgs unification in five dimensions
and whose low-energy spectrum is exactly that of the
minimal supersymmetric standard model (MSSM).
Similar theories have also been considered in the context
of orbifold GUT field theory [42]. We shall comment on
the differences in Appendix A.

A. The mini-landscape in a nutshell

We compactify the six extra dimensions of the heterotic
string on the product of three 2-tori as shown in Fig. 1.
Moding out the discrete Z6-II symmetry given as a 60�,
120�, and 180� rotation (‘‘twist’’ v) in the first, second, and
third torus, respectively, defines the orbifold [13,14]. The
geometry of the orbifold allows for no Wilson lines in the
first torus, one order-3 Wilson line A3 in the second torus
(e3 and e4 are the same direction on the orbifold) and two
order-2 Wilson lines A2 and A0

2 along e5 and e6, respec-
tively [43]. We take A0

2 � 0 to localize two identical copies
of 16’s at the fixed points 	 andw that will eventually sport
a D4 family symmetry [34,44,45].
Modular invariance allows for 61 different gauge em-

beddings (‘‘shift’’ V) of the twist. Only 15 of these shifts
break E8 � E8 to a gauge group containing SO(10), and
only 2 shifts allow for 16’s in the first/fifth twisted sector
(T1 and T5, respectively) that are not projected out by the
Wilson lines.
The models that come closest to the real world all stem

from one shift [36,37], termed VSOð10Þ;1 in Refs. [39,40].
Switching on all possible Wilson lines consistent with this
shift and modular invariance, we obtain �22 000 models
with different particle spectra. Successively, we impose our
phenomenological priors to get as close to the MSSM as
we possibly can: (i) standard model (SM) gauge group;
(ii) nonanomalous hypercharge that lies in SUð5Þ 

SOð10Þ; (iii) 3 generations of quarks and leptons, 1 pair
of Higgs doublets; (iv) all exotic (i.e. non-standard-model)
particles are vectorlike; (v) trilinear Yukawa coupling for a
heavy top; (vi) generalized B-L generator that is eventually
broken down to R parity; (vii) all spurious Abelian gauge
group factors are broken; (viii) string selection rules allow
for all exotics to decouple consistent with the ‘‘choice of
vacuum’’ [singlet vacuum expectation values (VEVs) must
not break SM gauge symmetries and R parity and must
satisfy F ¼ D ¼ 0].
This leaves us with 15 models with promising phenome-

nology. We use this sample to investigate whether the

3A recent analysis of gauge coupling unification can also be
found in Ref. [35].
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unification picture in orbifolds is consistent with the mea-
sured values of the coupling constants at low energies or, in
other words, whether we can fit �1, �2 and �3 at the
electroweak scale with a single coupling constant �STRING

atMS. Specifically, the set of exotics in both models 1 and 2
of Ref. [40] are similar enough to warrant parallel treat-
ment and are listed in Table IV in Appendix C. As can be
seen, the exotic matter which is charged under the MSSM
in model 1 overlaps with the exotic matter in model 2. Note
that we have labeled states with their hypercharge and B-L
quantum numbers as subscripts.

B. The orbifold GUT picture

The 15 models described in Sec. II A are naturally
embedded into a grand unified theory in five or six dimen-
sions [32]. Consider model 2 of Sec. 5.2 of the mini-
landscape search [40]. For completeness, the full details
of the model have been reproduced in Appendix C.

Instead of moding out the full Z6 � II ’ Z2 � Z3 sym-
metry (generated by the twist v) to get the four-
dimensional spectrum, we can mod out the Z3 subgroup
(generated by 2v) alone, leaving the SO(4) torus invariant.
The particles from the U, T2, and T4 sectors are free to
move around in the SO(4) torus and can thus be considered
to be the ‘‘bulk states’’ of a six-dimensional Z3 orbifold
with twist 2v, shift 2V and Wilson line A3.

In this picture, moding out the residual Z2 symmetry
(generated by 3v) corresponds to adding ‘‘brane states’’ to
the theory. The gauge group at the fixed points is obtained
from the bulk symmetry by moding out V2 ¼ 3V for 	 and
w and V2 þ A2 for j and m. The matter representations
follow from the mass equation at the respective fixed points
(given in terms of V2 and A2), subject to projection con-
ditions from V3 ¼ 2V and A3.

The gauge symmetry in four dimensions is the intersec-
tion of all gauge groups, and the brane GUT states branch
to SM representations of the T1, T3, and T5 sectors. This
can be understood from an orbifold GUT viewpoint by
assigning parities to the brane modes given by

P� e2�ip�V2 ; P0 � e2�ip�ðV2þW2Þ;

where p (the highest weight associated with the state) is a
sixteen-dimensional vector from the E8 � E8 lattice. Then,
the setup of Fig. 2 describes an orbifold S1=Z2 � Z0

2 where

1 extra dimension is compactified on a circle. The discrete
symmetries are realized as a reflection P : x5 ! �x5 and a
translation T : x5 ! x5 þ 2�R. Only the states that are
invariant under

P : �ðx5Þ ! �ð�x5Þ ¼ P�ðx5Þ;
PT : �ðx5Þ ! �ð�x5 þ 2�RÞ ¼ P0�ðx5Þ (1)

will be present in the low-energy spectrum.4

Orbifold GUTs, when generated from an underlying
string theory, are significantly more constrained than orbi-
fold GUT field theories. Whereas the only real constraint
in an orbifold GUT field theory is that the low-energy
effective field theory be anomaly-free, all anomalies in
the string theory are canceled at the string scale by the
generalized Green-Schwarz mechanism [46–50], so this
condition is automatically satisfied. In string orbifolds,
the parities are realized in terms of Wilson lines that
must satisfy stringent modular invariance constraints, so
we cannot simply assign parities at will. Further, the place-
ment of matter is not an independent degree of freedom in
string models. Finally, we are given a value for the cou-
pling constant at the cutoff; see Eq. (2). In a typical orbi-
fold GUT, this is a free parameter. In addition, there may be
some assumptions about strong coupling, but the details of
the ultraviolet completion are not addressed.

III. GAUGE COUPLING UNIFICATION IN
ORBIFOLDS

A. Unification in heterotic string theory in 10
dimensions

As a unified framework for particle physics and gravity,
string theory predicts Newton’s constant GN and relates it
to the gauge coupling constants. Unfortunately, the pre-
dicted value forGN , in the weakly coupled heterotic string,
turns out to be too large and needs to be reconciled with the
extrapolated running gauge coupling constants at the uni-
fication scale.
Throughout this paper we assume that we are in the

weakly coupled regime of the heterotic string. After com-
pactifying the ten-dimensional low-energy effective action

e1

e2

G2 root lattice

e 3 e 516

A2A3

16
e 6

e 4

SU(3) root lattice SO(4) root lattice

FIG. 1 (color online). The geometry of the compact dimensions.

4P0 � PT, where T corresponds the discrete gauge transfor-
mation due to a Wilson line.
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on a six-dimensional manifold, one obtains [9]

GN ¼ 1
8�STRING�

0: (2)

Here, �STRING denotes the common value of the gauge

coupling constants at the string scale MS ¼ 1=
ffiffiffiffiffi
�0p
.5

Low-energy data suggest ��1
STRING ’ ��1

GUT ’ 24 and MS ’
MGUT ’ 1016 GeV, so the predicted value for Newton’s
constant is off by a factor of about 400. Putting it another
way, if we use the measured value of the gravitational
constant GN ¼ 1=ðM2

PLÞ with MPL ’ 1:2� 1019 GeV, the
string scale is predicted to be MS ’ 5� 1017 GeV [9], in
disagreement with MGUT. These conclusions are based on
the assumptions that (i) we are in the weak coupling limit,
(ii) there are no new states between the electroweak and the
GUT scale that could contribute to the renormalization
group equations (RGEs), and (iii) the compactification is
isotropic; i.e. all compactified dimensions are comparable
in size.

In the following, we explore anisotropic orbifold com-
pactifications to fit low-energy data with a single coupling
constant atMS.

6 Other proposals that have been considered
in the literature include exotic matter representations at
intermediate scales, large threshold corrections, nonstan-
dard hypercharge normalizations from higher-level Kač-
Moody algebras, strings without supersymmetry, or the
strong coupling regime of the heterotic string [9–
11,35,54]. For a review of grand unification in the context
of string theory, see Ref. [12].

B. The RGEs for anisotropic orbifold compactifications

We study gauge coupling unification for the benchmark
models presented in the mini-landscape search [40]. As has
been emphasized in Sec. II A, these models are 2 out of 15
that already satisfy quite a few nontrivial criteria on the
road to the MSSM. We are working in the orbifold GUT
limit as outlined in Sec. II B. The gauge group geography
and the relevant part of its five-dimensional spectrum for
model 2 are given in Fig. 2. For the full details of the four-

dimensional spectrum, see Tables I and II in Appendix C.
The anisotropic compactification singles out the fifth di-
mension that is assumed to be large and thus introduces a
new scale into the theory, the compactification scale MC.
The other five compactified dimensions are assumed to be
of order the string scale MS.
We want to compare our models with low-energy data.

At the string scale MS, we have a unified gauge coupling
�STRING. Below the string scale we have three gauge cou-
plings which renormalize independently down to the weak
scale. In general, there are additional small (stringy) cor-
rections to the relationship in Eq. (2) at the string scale MS

[9–11]. Because these contributions are expected to be
small, we will neglect them in this analysis. In principle
we should integrate the three gauge couplings down to the
SUSY breaking scale using the two-loop RGEs, including
one-loop threshold corrections at the string scale, the com-
pactification scale, the exotic scale, MEX, and the SUSY
scale, finally fitting�i, i ¼ 1; 2; 3, atMZ [55,56]. However,
it is sufficient to compare the orbifold GUT to the four-
dimensional SUSY GUT running equations, which ap-
proximately (and implicitly) correct for SUSY threshold
corrections at the weak scale and two-loop renormalization
group running from theweak scale to the GUT scale. These
are given by the equations

��1
i ð�Þ ¼ ��1

GUT þ bi
2�

log
MGUT

�
þ 6

2�
�i3: (3)

The indices i ¼ 3; 2; 1 refer to SUð3Þc, SUð2ÞL, and Uð1ÞY ,
respectively. The bi are the so-called �-function coeffi-
cients and are most conveniently expressed in terms of the
Dynkin index7 [57]

bi ¼ �3‘ðvector multipletsÞ þ ‘ðchiral multipletsÞ: (4)

For the MSSM we have bi ¼ ð�3; 1; 33=5Þ. Finally, the
last term in Eq. (3) is a 3% threshold correction to ��1

3 at

the GUT scale that we need to match the precision elec-
troweak data.

e6

A 2
e5

SU(5)

SU(5)
10 + 5 + 1

2 (4 , 1) + 2 (4 , 1) + 4 (1 , 2)

SU(4) SU(2)

SU(4) SU(2)
2 (4 , 1) + 2 (4 , 1) + 4 (1 , 2)

SU(6)

from U , T2 , T4

35 + 20 + 9 (6 + 6)

10 + 5 + 1

from T1 , T3 , T5

from T1 , T3 , T5

from T1 , T3 , T5

from T1 , T3 T5

FIG. 2 (color online). Setup of the 5D orbifold GUT, where the fifth dimension (e5) is large compared to the other compact
dimensions.

5The string scale MS defined here corresponds to the effective
cutoff scale in our field theory calculation. This is discussed in
more detail in footnote 8, Sec. III B.

6For earlier work along this line, see [34,51–53].

7For hypercharge, we define the Dynkin index to be ‘ ¼
ð3=5ÞY2=4.
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The minimal and most elegant way to fit the low-energy
data is to arrange for all exotics (i.e. non-standard-model
particles) to obtain mass around MS. Up to the scale MC,
assumed to be not much below MGUT, the evolution of the
gauge coupling constants is then governed by the same
renormalization group equations as in the usual GUT
picture. For energies above MC, the RGEs receive addi-
tional contributions from the Kaluza-Klein tower of those
standard model particles that live in the bulk, thus giving
rise to both logarithmic and power-law running [21,22].
Unfortunately, this simple setup does not work. Varying the
values of �STRING at MS and of the compactification scale
MC, we cannot fit the gauge coupling constants at the
electroweak scale. We elaborate on this point in
Appendix A, where we show the difficulties involved
with gauge-Higgs unification in five dimensions.

The remaining possibility is to assume that not all
exotics obtain mass at MS, but some are light enough to
be relevant for the evolution of the coupling constants. At
the same time, of course, the exotics must still be massive
enough to decouple from the low-energy theory. We will
call this intermediate scale MEX and assume in the follow-
ingMS >MC * MEX. Now we can try to fit the low-energy
data by varying MEX, MC, MS and the multiplicities and
quantum numbers of the light exotics. Note that the run-
ning of the coupling constants below MEX will be given by
the same Eq. (3) as in the MSSM, since all of the exotics
are assumed to be heavier than MEX and the first excitation
of the Kaluza-Klein (KK) tower is of order MC. Near � ’
MEX, the renormalization group equations read:

��1
i ð�Þ ¼ ��1

STRING þ bMSSM;þþ
i þ bMSSM;brane

i

2�
log

MS

�

þ bEX;þþ
i þ bEX;brane

i

2�
log

MS

MEX

� 1

4�
ðbMSSM;þþ

i

þ bMSSM;��
i þ bEX;þþ

i þ bEX;��
i Þ logMs

Mc

þ X
P¼�;P0¼�

bMSSM;PP0
i þ bEX;PP0

i

2�

�
MS

MC

� 1

�
: (5)

These equations are obtained by starting at the highest
scale in the theory, MS, and evolving the gauge couplings
�i down toMC, taking into account all of the particles with
mass less than MS. In the next step, one takes the values
obtained for �i as boundary conditions for the renormal-
ization group equations at MC and calculates �i at MEX. In
order to compare to experimental values of the coupling
constants at MZ, we apply the two-loop RGEs [58]. Note
that this involves integrating out SUSY particles at MSUSY.
Technically, because the two-loop RGEs are good near the
GUT scale, our approach will be to compare the two
equations [Eqs. (3) and (5)] at the scale MEX. Provided
that MEX is near the GUT scale, the error introduced in the
analysis should be negligible. In principle, the exotic scale

MEX can be small, perhaps a TeV. In all cases we find,
however, the exotic scale is larger than 109 GeV, and in
most cases it is greater than 1012 GeV. The error we make
by matching Eqs. (3) and (5) at MEX � 109 GeV comes
from the difference in the two-loop corrections to the RG
running from MEX to the GUT scale. This correction is
expected to be less than a percent.
Let us look at Eq. (5) in some more detail. The first term

is the tree level boundary condition from the heterotic
string. The second and third terms contain loop contribu-
tions from MSSM fields and exotic matter, respectively—
the zero KK modes and the brane states are kept separate
for clarity. The last two terms are due to the massive KK

states in the bulk. The logarithmic (� logMS

MC
) and linear

(� MS

MC
) terms are a consequence of the geometry; i.e. in an

equivalent string calculation the factor of MS

MC
arises from the

dependence on the T (volume) andU (shape) moduli of the
torus.8 Note that the last term is a universal correction due
to the SU(6) fields in the bulk. We introduce the following
definitions:

bMSSM
i � bMSSM;þþ

i þ bMSSM;brane
i ;

bEX
i � bEX;þþ

i þ bEX;brane
i ;

bþþ
i � bMSSM;þþ

i þ bEX;þþ
i ;

b��
i � bMSSM;��

i þ bEX;��
i ;

bG � X
P¼�;P0¼�

bMSSM;PP0
i þ bEX;PP0

i :

This simplifies Eq. (5) a bit:

��1
i ð�Þ ¼ ��1

STRING þ bMSSM
i

2�
log

Ms

�
þ bEX

i

2�
log

MS

MEX

� 1

4�
ðbþþ

i þ b��
i Þ logMS

MC

þ bG

2�

�
MS

MC

� 1

�
: (6)

C. Gauge coupling unification: An effective field theory
calculation

Before we proceed, we will clear up some notational
issues. We will always talk about fields in the language of

8Note that our one-loop calculations are performed using an
effective field theory approach. In particular the sum over the
infinite tower of KK modes follows the regularization scheme of
Dienes, Dudas, and Gherghetta [21,22]. Moreover, in the work of
Ghilencea and Nibbelink [59] it is shown that if the field theory
cutoff �2 is chosen to satisfy the relation �2 ¼ 2e

3
ffiffi
3

p �
1
�0 
 1:05=�0, then the heterotic string loop calculation is ap-
proximately equal to the field theory results. Thus we identify
the string scale MS ¼ � 
 1ffiffiffiffi

�0p . We should note that the analysis
of [59] was done in the context of toroidal compactification. A
more relevant comparison should be done in an orbifold com-
pactification with Wilson lines. The latter approach was taken by
the authors of Ref. [35] in a T2=Z3 orbifold. Their results,
however, are not directly applicable to our situation.
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N ¼ 1 SUSY in four dimensions. The N ¼
1; 5-dimensional hypermultiplet contains two four-
dimensional chiral multiplets, and a five-dimensional vec-
tor multiplet contains a four-dimensional vector multiplet
and a four-dimensional chiral multiplet. The five-
dimensional N ¼ 1 theory can thus be described in terms
of four-dimensional N ¼ 1 fields (or in terms of four-
dimensional N ¼ 2 hypermultiplets).

In order to check gauge coupling unification, we will
equate the values of (i) 1=�3 � 1=�2, (ii) 1=�2 � 1=�1,
and (iii) �3 as obtained from Eqs. (3) and (6), respectively,
at the scale MEX, where both equations are valid. We find

log
MS

MGUT

¼ n3 � n2
4

log
MS

MEX

� 3

2
; (7a)

log
MS

MGUT

¼ 10n2 � n3 � 3n1
56

log
MS

MEX

þ 3

7
log

MS

MC

; (7b)

48� ¼ �

4

�
MPL

MS

�
2 � 6� 3 log

MS

MGUT

þ n3 log
MS

MEX

þ log
MS

MC

� 4

�
MS

MC

� 1

�
; (7c)

where the ni are beta function contributions from the
brane-localized exotics, as defined below. The first two
equations describe the relative running of the couplings
(i.e. their slopes), and the last one gives us information
about the absolute running (i.e. their intercepts). The co-
efficients ni are defined in terms of the set of exotics with
mass of order MEX as follows:

n3 � ½ð3; 1Þ1=3;� þ ð�3; 1Þ�1=3;�� þ n2 � ½ð1; 2Þ0;�
þ ð1; 2Þ0;�� þ n1 � ½ð1; 1Þ1;� þ ð1; 1Þ�1;��; (8)

where ‘‘�’’ for the B-L charge denotes anything. The
necessary �-function coefficients bi, using the numbers
in Table V in Appendix C, are found to be

~b EX ¼
�
n3; n2;

n3 þ 3n1
10

�
: (9)

Let us now consider those MSSM states located in the
bulk. In general, we can find two pairs of N ¼ 1 chiral
multiplets 6þ 6c which decompose as

2� ð6þ 6cÞ � ½ð1; 2Þ��
1;1 þ ð3; 1Þ�þ

�2=3;1=3�
þ ½ð1; 2Þþþ�1;�1 þ ð�3; 1Þ��

2=3;�1=3�
þ ½ð1; 2Þ�þ

1;1 þ ð3; 1Þ��
�2=3;1=3�

þ ½ð1; 2Þþ�
�1;�1 þ ð�3; 1Þþþ

2=3;�1=3�: (10)

This gives us the third family �b and L—the rest of the third
family comes from the 10þ 10c of SU(5) contained in the
20þ 20c of SU(6), which lives in the untwisted sector. An
interesting point is the genesis of the Higgs bosons. We

have remarked earlier that the models we look at come
from a broader class of models satisfying ‘‘gauge-Higgs
unification.’’ Our bulk gauge symmetry is SU(6), so the SU
(6) gauge bosons (and thus the adjoint representation)
necessarily live in the bulk. Under SUð5Þ � Uð1Þ, the
adjoint decomposes as

35 ! 240 þ 5þ1 þ 5c�1 þ 10: (11)

Thus the MSSM Higgs sector emerges from the breaking
of the SU(6) adjoint by the orbifold. Including the contri-
butions from the third family and the Higgses, we find
using Table VI in Appendix C

~bþþ ¼ ð�7;�3;13=5Þ; ~b�� ¼ ð5;1;1=5Þ; bG ¼�4:

(12)

D. Results

We find it necessary to introduce an intermediate mass
scale MEX, perhaps near the compactification scale, and
identify a set of exotics with mass MEX consistent with
gauge coupling unification. Solving the RG equations nu-
merically, we find 252 versions of model 2 (of which 82 are
also versions of model 1), where by ‘‘versions’’ we mean
inequivalent sets of ‘‘light’’ exotics satisfying gauge cou-
pling unification. Of these 252 (82), only 48 (9) are con-
sistent with the Super-K bounds on the proton lifetime [31]
(see Sec. 3.5). These are found in Tables VII and VIII in
Appendix C, where we also calculate the lifetime of the
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FIG. 3 (color online). Histogram of solutions withMS >MC *
MEX, showing the models which are excluded by Super-K
bounds (darker green) and those which are potentially accessible
in a next generation proton decay experiment (lighter green). Of
252 total solutions, 48 are not experimentally ruled out by the
current experimental bound, and most of the remaining parame-
ter space can be eliminated in the next generation of proposed
proton decay searches.
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proton due to dimension six operators; see Appendix B and
Fig. 3. The solutions which are applicable to model 1 are
listed in bold in both tables. Note that the GUT coupling
constant �STRING (evaluated at MS) varies depending on MS

and MEX. For example, in the last row of Table VII in
Appendix C, we find

��1
STRING ¼ 1

8

�
MPL

MS

�
2 ’ 1

8

�
1:22� 1019 GeV

5:47� 1017 GeV

�
2 ’ 62: (13)

Near the exotic scale where we match onto the low-energy
physics, we expect the (inverse) coupling constants to be of
order 30–40. Likewise, ��1

STRING is typically larger than this,
of order 50–60 or so [but sometimes as big as Oð1000Þ].
Thus, we must have a large and negative contribution from
the power-law running, which translates into the require-

ment that bG < 0. This is evident in Eq. (6), for example. If

bG > 0, we would need a large negative contribution from
the other terms, which is hard to reconcile with the loga-
rithmic suppression. For completeness, we plot the �
functions of the last solution in Table VII in Fig. 4. The
evolution of the gauge couplings is typical in this class of
models; i.e. the power-law running between the compacti-
fication scale is rather pronounced.

For the 11 models in Table VII, we keep only the
minimum amount of matter in the bulk; i.e. in order to
get the MSSM spectrum, it is sufficient to keep 2� ð6þ
6cÞ massless below the string scale. Given the constraint
that we want bG < 0, however, we are in principle able to
leave 4� ð6þ 6cÞ massless below the string scale. This

gives bG ¼ �2 and leads to 37 new solutions. These are
listed in Table VIII in Appendix C. Of the 48 solutions
(included in both models 1 and 2), 22 have proton lifetimes
which can potentially be tested by the next generation of
proton decay experiments; see Appendix B and Fig. 3 for
more details.
We stress that this analysis is quite general. Of the

15 models which fit the criteria in the mini-landscape
search, all come from a five-dimensional SU(6) orbifold,
and all of them have the same types of exotics. This means
that the analysis preformed here generalizes in a straight-
forward manner to the other mini-landscape models, whose
spectra are listed in Ref. [60].
In order to try and get a feel for the tunings involved in

the above conclusions, we can compare the GUT coupling
constant (at the string scale) with the ratio between the
string scale and the compactification scale.9 Further, we
will separate the solutions based on the hierarchy between
the compactification scale and the exotic scale. We plot the
result in Fig. 5. What we see is the correlation between a
long-lived proton and a moderate hierarchy between the
compactification scale and the string scale and between the
string scale and the Planck scale. However, these moderate
hierarchies come at the cost of introducing a smaller and
smaller exotic scale MEX. This means that a long-lived
proton favors a large hierarchy between the compactifica-
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FIG. 4 (color online). An example of the type of gauge cou-
pling evolution we see in these models versus the typical
behavior in the MSSM. The ‘‘tail’’ is due to the power-law
running of the couplings when towers of Kaluza-Klein modes
are involved. Unification in this model occurs at MS ’ 5:5�
1017 GeV, with a compactification scale of MC ’ 8:2�
1015 GeV and an exotic mass scale of MEX ’ 8:2� 1013 GeV.
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FIG. 5 (color online). Here we show the correlation between
the hierarchies in the problem. Quite generally, a small value of
��1

STRING requires a large hierarchy between the compactification
scale and the exotic scale. Again we show the excluded (darker
green) and possibly testable (lighter green) models. The exact
relationship between the ratio of MS=MC and the proton lifetime
is given in Appendix B. In particular, note the ‘‘nice’’ models
(black diamonds) in the large red box, characterized by moderate
hierarchies between all scales. These models are collected in
Table IX. Finally, note the one point in the small red box—this
model is described in Sec. IV.

9The proton decay rate �ðp ! �0eþÞ is proportional to the
fourth power of the GUT coupling constant; see Appendix B.
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tion scale and the exotic scale. The black diamonds repre-
sent those models with a moderate [<Oð350Þ] hierarchy
between the compactification scale and the exotic scale.
Most of these solutions are already ruled out by proton
decay constraints. The gray shaded circles represent those
solutions for which there is a large difference between the
exotic scale and the compactification scale.

We would also like to point out the small set of solutions
in the large red box, for which there are only moderate
hierarchies and which are consistent with the current
bounds on dimension six operators.10 Specifically, there
seems to be a ‘‘sweet spot’’ where all of the hierarchies in
the problem are of Oð100Þ or so. These models are high-
lighted in Table IX. In particular, these models can all be
eliminated by improving the current bounds on proton
decay from dimension six operators by a factor of
50–100.

The fact that the data fall approximately on two straight
lines is not surprising and is evidence of a power-law

relationship between ��1
STRING and MS

MC
. One can see this

relationship by eliminating logMS

MEX
between Eqs. (7a) and

(7b). We eventually find

log��1
STRING ¼ A log

MS

MC

þ B; (14)

where A and B are given in terms of the beta function

coefficients and logMPL

MGUT
. It is not surprising to find that the

actual values for A and B are roughly the same for all of the
solutions and that many solutions give identical values for
A and B.

IV. UNIFICATION, DECOUPLING OF EXOTICS
AND SUPERSYMMETRY

Now that we understand what exotic matter we need to
accommodate unification, we can ask if an intermediate
scale MEX is consistent with decoupling of the other
exotics. The potential difficulty can be summarized as
follows: all of the (200 000þ ) mass terms in the super-
potential come from giving various MSSM singlets VEVs.
Above, we have shown that unification depends on some
exotics receiving mass at the string scale and some exotics
receiving mass at an intermediate scale. This means that
some singlets need to have VEVs on the order of the string
scale MS, while other singlets need to have VEVs on the
order of the exotic mass scale MEX. It is not obvious,
a priori, that we can do this in a consistent way. That is,
decoupling with D ¼ F ¼ 0 was checked in Ref. [40] but
only for the case where all of the singlet VEVs were of
order the string scale. In light of gauge coupling unifica-
tion, we are motivated to revisit the previous conclusions.

As we will show, there is a very nice way to accommo-
date unification in model 1A, which relies only on moder-
ate tunings. The tunings will be apparent when we address
the question of F ¼ 0. We will see how some numbers of
order the string scale must conspire to cancel some num-
bers of order the exotic scale.
While models 1A and 2 have similar sets of exotics, they

have different superpotentials. So while it is possible to
find nice ways to accommodate unification within
model 1A, we find that there does not seem to be an easy
way to assign singlet VEVs in model 2 such that we can
accommodate unification. This does not mean that it is
impossible to accommodate unification in model 2, but it
does make the process of assigning singlet VEVs an ex-
ercise in fine-tuning.
In what follows, we use the notation defined in Ref. [40]

concerning the MSSM singlets. In short, the states labeled
si are singlets under the hidden sector and visible sector
gauge groups, while the states labeled hi transform as
(hidden sector) SU(2) doublets. Some subset of the si
and hi are expected to get nonzero VEVs, which defines
a vacuum configuration. Again, we refer the reader to
Ref. [40] for more details.

A. Model 1A

Let us first consider the issue of unification in model 1A,
where we can solve the Fi ¼ 0 equations exactly, giving us
conditions on the singlet VEVs to ensure that mass terms
for the exotics do not break supersymmetry at some high
scale. We must check that we can consistently give some
exotics intermediate scale mass, while maintaining
supersymmetry.
It turns out that giving only brane-localized exotic mat-

ter intermediate scale mass will not give gauge coupling
unification in this model. This can be seen as follows: in
order to get unification, we need bEX

3 � bEX
2 > 0; otherwise,

the prediction for the string scale is MS & 1015 GeV. The
states which contribute to this difference are (see Table IV,
for example)

v � ð3; 1Þ1=3;�2=3;

m � ð1; 2Þ0;�; and y � ð1; 2Þ0;0:
(15)

The mass matrices for the y and v turn out to be the same,
which means that we always get an equal number vþ �v
and yþ y with the same mass. One can check in Table VII
that there are no solutions in which the number of vþ �v is
less than or equal to the number of yþ y. Conversely, one
can see this from Eq. (7a). If n2 � n3, the string scale must
be smaller than the GUT scale (assuming MS >MEX),
which (as we have previously argued) is not physical.
Thus we must give some bulk exotic matter intermediate
scale mass as well.
In giving bulk matter mass, we are severely limited in

our options. For one, the requirement that bG < 0 means10See Appendix B for more details.
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that we can keep only two extra pairs of 6þ 6c light.
Further, there is only one pair of extra down quarks and
the states �þ ��. In the first case, the extra dþ �d pair

comes in an SU(6) multiplet with an extra ‘þ �‘, both of
which have ðþþÞ boundary conditions and both of which
couple in the same way to the singlet fields (to sixth order,
and likely to all orders). This means that they must get the
same mass, and we cannot get bEX

3 � bEX
2 > 0 in this man-

ner. The remaining option is that we find an assignment of
singlet VEVs to give one pair of �þ �� intermediate scale
mass.

Let us be a bit more explicit about how one would
accomplish this, starting with a brief examination of the
�’s. The mass matrix for the �’s looks like

M � �� ¼

0 B1 B2 0 0 0
B3 A1 A2 0 0 0
B4 A3 A4 0 0 0
0 0 0 C1 C2 D1

0 0 0 C3 C4 D2

0 0 0 D3 D4 0

0
BBBBBBBB@

1
CCCCCCCCA
; (16)

where Ai, Bi, Ci and Di are functions of singlet fields. Let
us concentrate on the upper left block of this matrix, which
involves only Ai and Bi. (The expressions for Ci andDi are
long and unenlightening and are not essential for the dis-
cussion here.) In general, the entries in the matrix have the
following form:

Ai � 1

M5
S

s1 � s5 � s6 � s18 � ðh1 � h10 þ h2 � h9Þ; (17)

Bi � 1

M5
S

s5 � s6ðh10 � h1 þ h9 � h2Þ � ðh1 � h2 þ s17 � s18Þ:
(18)

Naively, diagonalizing this block gives one zero eigen-
value, which means that there are two linear combinations
of the �’s that are massless. However, one must remember
that the string selection rules give us only the form of the
Yukawa couplings and not their exact magnitudes. In gen-
eral, this means that we should be calculating N point
correlation functions on the orbifold in order to get the
exact Yukawa couplings in the theory. In particular, it is
important to remember that the �’s live at different orbifold
fixed points, and the interaction eigenstates are a linear
superposition of these ‘‘orbifold eigenstates.’’ Returning to
Eq. (17), we see that if we require

hs1i �MEX; all other singlets�MS; (19)

we naturally get one eigenstate with mass of orderMEX and
five heavy (�MS) eigenstates. We note that there is some
dependence on hs1i in the Ci and Di at fifth order in the
singlets; however, there is no dependence at sixth order,
suggesting that these terms (in general) dominate the much
smaller fifth-order terms.

Next we consider the vþ �v and yþ y. The mass matri-
ces for these states are 2� 2 and identical, and after they
are diagonalized we find (ignoring constants of order one)

m� s25

�
1þ 1

M2
S

ðs26 � s15 þ s26 � s16Þ

þ 1

M4
S

ðs226 � s15 � s16 þ s226 � s216 þ s226 � s215Þ

þ 1

M5
S

ðs4 � s6 � s9 � s30 � s18Þ
�
s11 � s5

s25

��
: (20)

It is clear that the following set of singlet VEVs is con-
sistent with giving 2� ðvþ �vÞ þ 2� ðyþ yÞ a mass at
MEX:

hs1i � hs25i �MEX; all other singlets�MS: (21)

Note that we do rely here on some suppression in the sixth-
order term, so that it does not give an overwhelming [i.e.
OðMSÞ] contribution to the mass term. This may be viewed
as an additional tuning in the singlet VEVs, on the order of
1 part in 10 or 20.
Finally we check whether the VEV assignment (21) is

consistent with having some number of ð1; 1Þ1;� þ
ð1; 1Þ�1;� pairs with mass �MEX. In general, the charged

singlet mass matrix (if we ignore the possibility of inter-
mediate scale mass for the �fþ þ f�) is 14� 14 with
equally complicated eigenvalues, so we will omit the de-
tails of this analysis. Nevertheless, if we proceed in the
same manner, we do find two linear combinations of
singlets (sþ and s�) whose mass terms depend explicitly
on the VEV hs25i, giving them naturally small mass terms.
We conclude that unification is possible in principle in

model 1A. Specifically, in the absence of accidental can-
cellations, and assuming that higher-order terms in the
superpotential are negligible (such that the light linear
combination of the �’s remains light), we have found one
version of model 1A that gives us gauge coupling unifica-
tion. Namely, if we assume order one coefficients in the
mass matrices, and that

hs1i � hs25i �MEX; all other singlets�MS; (22)

we have exactly the following matter content in the theory
with mass on the order of MEX:

2� ½vþ �v� þ 1� ½yþ y� þ 2� ½sþ þ s�� þ ½�þ ���:

This corresponds to the solution marked with an arrow
( ) ) in Table VIII in Appendix C.11 This gives us a
prediction for the intermediate scale, the compactification
scale, the string scale, and proton decay coming from

11Note that the states y are doublets under a hidden sector SU
(2), so that 1� ½yþ y� � 2� ½ð1; 2Þ0;� þ ð1; 2Þ0;��.
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dimension six operators:

MEX � 1:9� 109 GeV; MC � 2:2� 1017 GeV;

MS � 1:0� 1018 GeV; �ðp! eþ�0Þ � 1:2� 1038 yr:

(23)

It is worth pointing out that this solution is not yet ruled out
by the current bounds on proton decay, a fact which was
not guaranteed. This model is pictured in the small red box
in Fig. 5.

We note that the other option that one may try is, for
example,

hs11i þ hs5i �MS; hs11i � hs5i �MEX;

hs25i � hs1i �MEX:
(24)

This is a tuning to one part in MS=MEX and is consistent
with F ¼ 0, which is discussed below. This gives us one
pair of vþ �v and one y, and one pair of �þ �� with exotic
scale mass, assuming that we cannot neglect the sixth-
order term in Eq. (20). The problem that one may encoun-
ter is with the charged singlets. Taking hs25i �MEX gen-
erally gives one at least two charged singlets with mass at
the intermediate scale, so one may need an additional
tuning in that sector of the theory in order to realize one
of the solutions in Table VIII.

F ¼ 0

Let us now comment on the compatibility of these
solutions with the constraint of F ¼ 0 in the case of
model 1A. If we set all of the coefficients in the super-
potential to one, the F flatness conditions can be solved
exactly in this model. In units where MS � 1, we find the
following relationships among the singlet VEVs:

s22 ¼ � 1

s20 þ s21
ðh1h2 þ s17s18Þ � s23; (25)

s26 ¼ � 1

s15 þ s16
; (26)

s1 ¼ s15 þ s16
s18

fh1h10 þ h2h9 þ s17s25 þ s18s27

þ ðs15 þ s16Þs30 þ ðs20 þ s21Þs31g: (27)

The task is to now assign arbitrary VEVs to everything
except s22, s26, and s1 and look for solutions where s1 �
s25 �MEX. The tuning in this model is evident in Eq. (27).
It is clear that there must be a cancellation on the right-
hand side of the equation to one part in MS=MEX. In
general, one has no trouble finding numerical solutions to
these equations such that s1 � s25 �MEX, while all other
singlets have VEVs near the string scale.

One may object to the fact that we did not include
superpotential coefficients in Eqs. (25)–(27), as it is clear
that decoupling depends on these coefficients not being set
to one. Solving the F flatness conditions with arbitrary
superpotential coefficients is a computationally intensive
problem. However, we expect that the inclusion of such
coefficients will not significantly alter our conclusions.

B. Model 2

The exotic matter content of model 2 is listed in
Table IV. The brane-localized states which contribute to
the differential running ��1

3 � ��1
2 are

v � ð3; 1Þ1=3;�4=3;

m � ð1; 2Þ0;�; and y � ð1; 2Þ0;0:
(28)

In model 2 we have

4�ðvþ �vÞ þ 2� ðyþ yÞ þ 2� ðmþmÞ
þ 20� ðsþ þ s�Þ þ 2� ðxþ þ x�Þ; (29)

where x� are defined in Table IV.
The mass matrix for the v is a 4� 4 block diagonal

matrix. The blocks are both 2� 2, and the upper block
turns out to be equivalent to the (2� 2) mass matrix for the
y’s. By choosing

hh2i � hs43i �MEX; all other singlets�MS; (30)

we find 4� ðvþ �vÞ þ 2� ðyþ yÞ. The problem with the
VEV assignment in Eq. (30) is that we get too many
charged singlets, so wewill need to rely (heavily) on tuning
arguments. Thus we conclude that, for model 2 to be
consistent with gauge coupling unification, we must ar-
range a conspiracy among the singlet VEVs, such that we
get intricate cancellations in the charged singlet sector.

V. CONCLUSIONS

We have addressed the question of gauge coupling uni-
fication in a class of 15 mini-landscape models [40] with
properties very similar to the MSSM. We analyze these
E8 � E8 weakly coupled heterotic string models compac-
tified on an anisotropic orbifold with one large (R) and five
small (lS) extra dimensions, where R � lS and lS is the
string length. All of these theories can then be described in
terms of an effective 5D SU(6) orbifold GUT field theory
with compactification scale MC ¼ 1=R and cutoff scale
MS ¼ 1=lS. SU(6) is broken to the MSSM gauge group
by orbifold boundary conditions at MC, and gauge cou-
plings must unify at the cutoff scale MS. Moreover, in an
orbifold GUT field theory, this is accomplished with the aid
of Kaluza-Klein modes which contribute to the RG running
above the compactification scale MC.
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In all 15 models the electroweak Higgs doublets reside
in the (effective 4D, N ¼ 2) vector multiplet; hence, the
models satisfy ‘‘gauge-Higgs unification.’’ In addition the
third family of quarks and leptons are bulk modes, while
the two lighter families are brane states. Although gauge-
Higgs unification may be well motivated by aesthetics, we
prove in Appendix A that gauge coupling unification is not
possible if one includes only MSSM states and their KK
towers. Thus it is necessary to also include the possible
contribution of vectorlike exotics to the RG running. To
simplify the analysis, we assume a small set of exotics
obtain mass at a scale MEX <MC with the remainder
obtaining mass at MS. Using an effective field theory
analysis, we find many solutions to gauge coupling uni-
fication labeled by the different inequivalent sets of exotics
with mass atMEX. These solutions are found in Tables VII,
VIII, and IX in Appendix C.

We have analyzed two models in more detail
(models 1A and 2 [40]), since for these models we have
the superpotential up to order 6 in MSSM singlets. In this
case, we have shown that one of our solutions (in
model 1A) is consistent with string theory in a supersym-
metric vacuum with F ¼ 0, if we tune the singlet VEVs
appropriately in Eq. (27). On the other hand, for the case of
model 2, although there are many effective field theory
solutions, we have not been able to demonstrate the exis-
tence of a simple string vacuum solution with F ¼ 0. In
this case, a solution may still be possible; however, it
would require more fine-tuning.

Since quarks and leptons of the first two families are
located on an effective SU(5) brane, they are subject to
proton decay processes mediated by gauge exchange at the
compactification scale MC. Moreover, since MC is generi-
cally less than the 4D GUT scale, the proton decay rate for
the process p ! eþ�0 is enhanced. Thus 80% of the
models satisfying gauge coupling unification are excluded
by Super-K bounds on proton decay. Most of the other
models can be tested at a future proton decay detector.

All of the mini-landscape models have an exact R parity,
so they do not suffer from dimension three or four baryon
and/or lepton number violating processes. Moreover, the
lightest supersymmetric particle is stable and a possible
dark matter candidate. However, unlike 5D or 6D orbifold
GUT field theories studied in the literature, these models
suffer from uncontrolled dimension five operator contribu-
tions to proton decay. In particular, some of the vectorlike
exotics have quantum numbers of color triplet Higgs mul-
tiplets. When given mass atMS orMEX they induce dimen-
sion five proton decay operators. Although it may be
possible to fine-tune the coefficients of these operators to
be small, it would be preferable to have a symmetry argu-
ment. This problem needs to be addressed in any future
string model building.

As noted, all of the models studied in this analysis have a
5D (or 6D) SU(6) orbifold GUT limit. The complete

spectrum of the 6D model (prior to the final Z2 orbifold
and Wilson line A2) is given in Table III. It is very interest-
ing to note that the spectrum is identical with the spectrum
found in an E8 � E8 heterotic string compactified on a
smooth K3 � T2 manifold with instantons embedded in
the E8 � E8 gauge groups [62]. This suggests that these
models may be obtained by the final Z2 orbifolding of
these smooth manifolds.
In conclusion, we have shown that gauge coupling uni-

fication may be accommodated in the present class of
string models. However, a simple solution, without includ-
ing vectorlike exotics below the string scale, was not
possible. This appears to be a general conclusion stemming
from the particular implementation of gauge-Higgs unifi-
cation in these models. Finally, any future string model
building needs to address the general problem of uncon-
trolled dimension five baryon and lepton number violating
operators.
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APPENDIX A: COMPARING TWO SU(6)
ORBIFOLD GUTS

The SU(6) orbifold GUTs considered in this paper sat-
isfy the special property of gauge-Higgs unification. This is
also a property of the 5D SU(6) orbifold GUT discussed in
Ref. [42]. It is instructive to compare this SU(6) model to
one without gauge-Higgs unification, in particular, the 5D
SU(5) orbifold GUT discussed in Ref. [24].
In the models with gauge-Higgs unification, the Higgs

multiplets come from the 5D vector multiplet ðV;�Þ, both
in the adjoint representation of SU(6). V is the 4D gauge
multiplet, and the 4D chiral multiplet� contains the Higgs
doublets. These states transform as follows under the orbi-
fold parities ðPP0Þ:

V:

ðþþÞ ðþþÞ ðþþÞ ðþ�Þ ðþ�Þ ð�þÞ
ðþþÞ ðþþÞ ðþþÞ ðþ�Þ ðþ�Þ ð�þÞ
ðþþÞ ðþþÞ ðþþÞ ðþ�Þ ðþ�Þ ð�þÞ
ðþ�Þ ðþ�Þ ðþ�Þ ðþþÞ ðþþÞ ð��Þ
ðþ�Þ ðþ�Þ ðþ�Þ ðþþÞ ðþþÞ ð��Þ
ð�þÞ ð�þÞ ð�þÞ ð��Þ ð��Þ ðþþÞ

0
BBBBBBBB@

1
CCCCCCCCA
;

(A1)

�:

ð��Þ ð��Þ ð��Þ ð�þÞ ð�þÞ ðþ�Þ
ð��Þ ð��Þ ð��Þ ð�þÞ ð�þÞ ðþ�Þ
ð��Þ ð��Þ ð��Þ ð�þÞ ð�þÞ ðþ�Þ
ð�þÞ ð�þÞ ð�þÞ ð��Þ ð��Þ ðþþÞ
ð�þÞ ð�þÞ ð�þÞ ð��Þ ð��Þ ðþþÞ
ðþ�Þ ðþ�Þ ðþ�Þ ðþþÞ ðþþÞ ð��Þ

0
BBBBBBBB@

1
CCCCCCCCA
:

(A2)

RECONCILING GRAND UNIFICATION WITH STRINGS BY . . . PHYSICAL REVIEW D 78, 066006 (2008)

066006-11



Note the appearance of the MSSM Higgs multiplets in �
with ðþþÞ boundary conditions, and its partner in V with
ð��Þ boundary conditions. These massive KK states con-
tribute to a logarithmic running of the gauge couplings
with a term of the form

��1
i � � 1

4�
ðbþþ

i þ b��
i Þ logMS

MC

: (A3)

We find for the model of Ref. [42] (including just V, �
above)

~bþþ ¼ ð�9;� 5; 3=5Þ; ~b�� ¼ ð3;�1;�9=5Þ;
~bþþ þ ~b�� ¼ ð�6;�6;�6=5Þ: (A4)

(These numbers can be calculated using the values in
Table VI.) Again we stress that the only difference between
the models presented in this paper and that of Ref. [42] is
that the third family lives in the bulk in our constructions,
which will change these numbers by only a universal
contribution. Indeed, one can check by comparing
Eq. (A4) with (9) that the only difference is a family
universal contribution.

This can then be compared to an SU(5) model without
gauge-Higgs unification [24]. In this case the 5D gauge
multiplet includes the states, with their transformation
under the orbifold parities ðPP0Þ:

V:

ðþþÞ ðþþÞ ðþþÞ ðþ�Þ ðþ�Þ
ðþþÞ ðþþÞ ðþþÞ ðþ�Þ ðþ�Þ
ðþþÞ ðþþÞ ðþþÞ ðþ�Þ ðþ�Þ
ðþ�Þ ðþ�Þ ðþ�Þ ðþþÞ ðþþÞ
ðþ�Þ ðþ�Þ ðþ�Þ ðþþÞ ðþþÞ

0
BBBBB@

1
CCCCCA; (A5)

�:

ð��Þ ð��Þ ð��Þ ð�þÞ ð�þÞ
ð��Þ ð��Þ ð��Þ ð�þÞ ð�þÞ
ð��Þ ð��Þ ð��Þ ð�þÞ ð�þÞ
ð�þÞ ð�þÞ ð�þÞ ð��Þ ð��Þ
ð�þÞ ð�þÞ ð�þÞ ð��Þ ð��Þ

0
BBBBB@

1
CCCCCA: (A6)

The Higgs multiplets are contained in the chiral multiplets
H5 þHc

5 and H�5 þHc
�5
, with parities

H5; H�5:

ðþ�Þ
ðþ�Þ
ðþ�Þ
ðþþÞ
ðþþÞ

0
BBBBB@

1
CCCCCA; (A7)

Hc
5; H

c
�5
:

ð�þÞ
ð�þÞ
ð�þÞ
ð��Þ
ð��Þ

0
BBBBB@

1
CCCCCA: (A8)

In this case, the ð��Þ partners of the Higgs doublets

appear in chiral multiplets not the gauge multiplet as
before. Thus we now find the beta function coefficients
given by

~bþþ ¼ ð�9;� 5; 3=5Þ; ~b�� ¼ ð3; 3; 3=5Þ;
~bþþ þ ~b�� ¼ ð�6;�2; 6=5Þ: (A9)

To get relationships between the cutoff (MS) and the
compactification scale (MC), we can compare 5��1

1 ðMCÞ �
3��1

2 ðMCÞ � 2��1
3 ðMCÞ and ��1

3 ðMCfÞ � ��1
2 ðMCÞ in the

orbifold GUT and in the MSSM. Including the threshold
correction in Eq. (3) we find (for gauge-Higgs unification)

log
MGUT

MC

¼ 2

3
log

MS

MC

þ 1

3
; log

MS

MGUT

¼ � 3

2
: (A10)

The factors of 13 and� 3
2 come from the threshold correction

applied at MGUT. These equations implicitly assume the
relation MC � MGUT;MS; however, the solution to the
equation gives the unphysical relation MC >MGUT >MS.
This is the main reason we need to rely on light exotics. On
the other hand, for the SU(5) orbifold GUT we find

log
MGUT

MC

¼ 2

3
log

MS

MC

þ 1

3
; log

MGUT

MC

¼ 1

2
log

MS

MC

þ 3

2
;

(A11)

which gives the physically acceptable solution log MS

MGUT
¼ 2

and logMGUT

MC
¼ 5. We thus conclude that simple gauge-

Higgs unification in 5D SU(6) is not viable.
In Ref. [42] an N ¼ 2 model with gauge-Higgs unifica-

tion in 6D (or N ¼ 4 in 4D) was also considered. In this
case the Higgs multiplet and its ð��Þ partners are con-
tained in chiral adjoints. Gauge coupling unification works
in this model. Unfortunately, we do not know how to obtain
such a model from the heterotic string.
Of course, the additional problem concerning gauge

coupling unification in the context of the heterotic string
is the need to match the low-energy values of the coupling
constants given values of MC and MS. In particular, we
must satisfy the relation

��1
STRING ¼ 1

8

�
MPL

MS

�
2
: (A12)

In most cases, with MC � MGUT <MS, the power-law run-
ning due to the KK modes is required, i.e.

��1
i ðMCÞ � ��1

STRING þ bG

2�

�
MS

MC

� 1

�
þ long terms

�Oð10Þ: (A13)
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APPENDIX B: CONSTRAINTS FROM PROTON
DECAY

1. Dimension six operators

The gauge bosons in GUTs can mediate proton decay
via effective dimension six operators. The best bounds on
proton decay come from the channel p ! eþ þ �0, and
current (published) experimental limits are [31]

�ðp ! eþ þ �0Þ> 1:6� 1033 yr: (B1)

In this paper, we are looking at an SU(6) GUT in five
dimensions, which is broken to either SU(5) or SUð4Þ �
SUð2Þ on the branes. The dangerous operators come from
SU(5) gauge boson (X) exchange and have been calculated
in Ref. [63]. In a 4D SU(5) GUT, the effective Lagrangian
leading to proton decay from X boson exchange is given
by

L eff ¼ g2GUT
2M2

X

J�J��; (B2)

where

J� ¼ �ðlÞ� ���dc þ ðucÞ� ���qþ ðqÞ� ���ec þ H:c: (B3)

The operators which lead to proton decay are given by

L eff ¼ � g2GUT
2M2

X

X
i;j

½ðq�i ���uci Þð‘� ���d
c
jÞ

þ ðq�i ���eci Þðq�j ���u
c
jÞ�:

(B4)

The decay rate of p ! �0eþ in the 4D theory is given by

�ðp ! �0eþÞ ¼ ðm2
p �m2

�Þ2
64�m3

pf
2
�

�2
LATA

2 g
4
GUT

M4
X

ð1þDþ FÞ2

� ½ð1þ jVudj2Þ2 þ 1�: (B5)

These formulas will receive modifications in our model,
based on the fact that there is a relationship among the
string scale, the Planck scale and the coupling constant [see
Eq. (2)] and that the whole tower of KK modes associated
with the SU(5) gauge bosons will contribute to the decay
rate.

Explicitly, the decay rate goes like g4GUT. We replace this
by

g4GUT ! ð4�Þ2�2
STRING ¼ 64� ð4�Þ2 �

�
MS

MPL

�
4
: (B6)

Next, we should consider the relationship between the
compactification scale and the X boson mass. The SU(5)
gauge bosons have ðþ�Þ boundary conditions and masses
of mn ¼ ðnþ 1

2ÞMC. Proton decay can proceed by ex-

change of any of the tower of KK modes, which suggests
we take

1

M2
X

! 2� 1

MC
2

X1
n¼0

1

ðnþ 1
2Þ2

¼ �2

MC
2
: (B7)

The factor of 2 comes from the fact that the KK modes of
the gauge bosons are normalized differently than the zero
modes [24].12 Including all corrections, we make the re-
placement

g4GUT
M4

X

! 64� ð4�Þ2 �
�
MS

MPL

�
4 � �4

MC
4
: (B8)

In our 5D orbifold GUT, we find

�ðp ! �0eþÞ ffi 4:00� 10�73

�
MS

MC

�
4
GeV; (B9)

where we have used A ¼ 3:4,D ¼ 0:80 and F ¼ 0:44, and
�LAT ’ 0:011 GeV3 [41]. For the proton lifetime, we find

�ðp ! �0eþÞ ffi 5:21� 1040
�
MC

MS

�
4
yr: (B10)

This corresponds to an upper limit on the ratio between the
string scale and the compactification scale of

MS

MC

& 75: (B11)

Alternatively, given a (typical) string scale of about 5�
1017 GeV, this corresponds to

MC * 6:6� 1015 GeV: (B12)

An interesting difference between this result and the result
one typically finds in an orbifold GUT (see, for example,
Ref. [64]) is that the proton lifetime no longer scales like
the compactification scale directly but as a ratio of scales.
This means that the compactification scale can be smaller
than MC � 6:6� 1015 GeV if the string scale is suffi-
ciently small, which means that the underlying GUT is
very weakly coupled (�GUT � 1).13 We note that this is an
additional constraint that has no analogy in typical orbifold
GUT model building, imposed by the relationship among
the coupling constant, Newton’s constant, and �0. Finally,
in the interesting limit that MC ! MS, we find the upper
bound on the proton lifetime in this class of models: �ðp !
�0eþÞ & 5:21� 1040 yr.

12Equivalently, one can understand this factor as the Kaluza-
Klein tower of gauge bosons coupling more strongly to the
fermions by a factor of

ffiffiffi
2

p
, which corresponds to rescaling

gGUT !
ffiffiffi
2

p
gGUT.

13This may correspond to a region where the string coupling
constant gSTRING � e� (where � is the dilaton field) is no longer
small. This is undesirable, as we wish to embed these models in
the weakly coupled heterotic string [65].
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2. Dimension five operators

In supersymmetric theories, the proton may decay via
dimension five operators as well. In the mini-landscape
models [40], the ð3; 1Þ�2=3;�2=3 þ ð�3; 1Þ2=3;2=3 states, called
� and ��, can mediate proton decay via dimension five
operators—they have the same gauge quantum numbers
as color triplet Higgses. It was shown in Ref. [7] that the
effective mass of the color triplet Higgsino M ~H �
1018–1021 GeV has to be much larger than the (four-
dimensional) GUT scale in order to evade bounds on p !
Kþ �	, depending on the soft SUSY breaking parameters.

The � particles have the same quantum numbers as color
triplet Higgses, and thus we expect similar bounds for them

(assuming they couple to quarks and leptons with small
effective Yukawa couplings). Unfortunately, to make mat-
ters worse, it was found in Ref. [40] that the � states have
tree level coupling to the quarks in the superpotential, and
so the coupling is naturally of order one, i.e. not suppressed
by Yukawa factors as they are in the typical dimension five
proton decay operator. However, by carefully adjusting the
singlet VEVs that describe the �, �� interactions, this
problem can be avoided, but currently we are lacking a
mechanism that would naturally suppress this decay chan-
nel for the proton.

APPENDIX C: MISCELLANY

TABLE I. Spectrum of model 1 of the mini-landscape search [40]. From the viewpoint of the five-dimensional theory, all states that
are not localized in the SO(4) torus (U, T2, T4) are bulk modes. The symbols 	, w, j, and m indicate the localization of the brane
modes in the SO(4) torus; compare Fig. 2.

U T3 T5

1� ð3; 2Þ1=3;1=3 Bulk 4� ð1; 1Þ1;3 m 1� ð3; 2Þ1=3;1=3 w 1� ð1; 1Þ�1;�3 j

1� ð�3; 1Þ�4=3;�1=3 Bulk 4� ð1; 1Þ�1;�3 m 1� ð3; 2Þ1=3;1=3 	 1� ð1; 1Þ1;�3 m

1� ð1; 2Þ1;0 Bulk 4� ð1; 1Þ1;3 j 1� ð�3; 1Þ�4=3;�1=3 w 1� ð1; 1Þ1;3 m

1� ð1; 2Þ�1;0 Bulk 4� ð1; 1Þ�1;�3 j 1� ð�3; 1Þ�4=3;�1=3 	 1� ð1; 1Þ1;3 j

1� ð1; 1Þ2;1 Bulk 2� ð1; 1Þ1;2 m 1� ð�3; 1Þ2=3;�1=3 w 1� ð1; 1Þ1;�3 j

4� ð1; 1Þ0;�1 Bulk 2� ð1; 1Þ�1;�2 m 1� ð�3; 1Þ2=3;�1=3 	 2� ð1; 1Þ1;�2 m

5� ð1; 1Þ0;1 Bulk 2� ð1; 1Þ1;2 j 1� ð�3; 1Þ�1=3;8=3 m 2� ð1; 1Þ�1;2 m

2� ð1; 1Þ0;0 Bulk 2� ð1; 1Þ�1;�2 j 1� ð3; 1Þ1=3;�8=3 m 2� ð1; 1Þ1;�2 j

T2 1� ð1; 1Þ1;2 m 1� ð�3; 1Þ�1=3;8=3 j 2� ð1; 1Þ�1;2 j

3� ð�3; 1Þ2=3;2=3 Bulk 1� ð1; 1Þ1;�2 m 1� ð3; 1Þ1=3;�8=3 j 1� ð1; 1Þ0;5 w

3� ð3; 1Þ�2=3;�2=3 Bulk 1� ð1; 1Þ1;�2 j 1� ð1; 2Þ�1;�1 w 1� ð1; 1Þ0;�5 w

2� ð�3; 1Þ2=3;�1=3 Bulk 1� ð1; 1Þ�1;2 j 1� ð1; 2Þ�1;�1 	 1� ð1; 1Þ0;5 	
1� ð1; 2Þ1;1 Bulk 1� ð1; 1Þ0;6 w 1� ð1; 2Þ0;�3 m 1� ð1; 1Þ0;�5 	
3� ð1; 1Þ0;5 Bulk 1� ð1; 1Þ0;�6 w 1� ð1; 2Þ0;3 m 2� ð1; 1Þ0;3 w

6� ð1; 1Þ0;3 Bulk 1� ð1; 1Þ0;6 	 1� ð1; 2Þ0;3 j 2� ð1; 1Þ0;�3 w

4� ð1; 1Þ0;2 Bulk 1� ð1; 1Þ0;�6 	 1� ð1; 2Þ0;�3 j 2� ð1; 1Þ0;3 	
4� ð1; 1Þ0;�2 Bulk 2� ð1; 1Þ0;�2 w 1� ð1; 2Þ0;2 m 2� ð1; 1Þ0;�3 	
5� ð1; 1Þ0;1 Bulk 2� ð1; 1Þ0;2 w 1� ð1; 2Þ0;�2 m 1� ð1; 1Þ0;�1 w

2� ð1; 1Þ0;�1 Bulk 2� ð1; 1Þ0;�2 	 1� ð1; 2Þ0;2 j 1� ð1; 1Þ0;�1 	
21� ð1; 1Þ0;0 Bulk 2� ð1; 1Þ0;2 	 1� ð1; 2Þ0;�2 j 1� ð1; 1Þ0;1 w

T4 2� ð1; 2Þ0;0 m 1� ð1; 1Þ0;1 w

3� ð�3; 1Þ2=3;2=3 Bulk 2� ð1; 2Þ0;0 j 1� ð1; 1Þ0;1 	
3� ð3; 1Þ�2=3;�2=3 Bulk 1� ð1; 1Þ2;1 w 1� ð1; 1Þ0;1 	
1� ð�3; 1Þ�2=3;1=3 Bulk 1� ð1; 1Þ2;1 	 8� ð1; 1Þ0;0 w

2� ð1; 2Þ�1;�1 Bulk 1� ð1; 1Þ�1;�3 m 8� ð1; 1Þ0;0 w

3� ð1; 1Þ0;�5 Bulk 1� ð1; 1Þ�1;3 m 6� ð1; 1Þ0;0 	
6� ð1; 1Þ0;�3 Bulk 1� ð1; 1Þ�1;3 j 6� ð1; 1Þ0;0 	
2� ð1; 1Þ0;�2 Bulk

2� ð1; 1Þ0;2 Bulk

1� ð1; 1Þ0;1 Bulk

4� ð1; 1Þ0;�1 Bulk

21� ð1; 1Þ0;0 Bulk
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TABLE III. The full (five-dimensional) spectrum of the models that we analyze [39]. Note that
8vþcþs � 8v þ 8c þ 8s. In five dimensions, both models 1 and 2 have the gauge group SUð6Þ �
½SOð8Þ � SUð3Þ�0. Note that states are written in the language of D ¼ 5, N ¼ 1, and that the
spectrum of these models are identical to those examined by Ref. [61].

Multiplet type Representation Number

Tensor Singlet 1

Vector ð35; 1; 1Þ � ð1; 28; 1Þ 35þ 28
�ð1; 1; 8Þ � 5� ð1; 1; 1Þ 8þ 5

Hyper ð20; 1; 1Þ � ð1; 8vþcþs; 1Þ � 4� ð1; 1; 1Þ 20þ 24þ 4
�9� fð6; 1; 1Þ � ð�6; 1; 1Þg 108

�9� fð1; 1; 3Þ � ð1; 1; �3Þg 54

�3� ð1; 8vþcþs; 1Þ 72

�36� ð1; 1; 1Þ 36

Supergravity singlets 2

TABLE II. Spectrum of model 2 of the mini-landscape search [40]. From the viewpoint of the five-dimensional theory, all states that
are not localized in the SO(4) torus (U, T2, T4) are bulk modes. The symbols 	, w, j, and m indicate the localization of the brane
modes in the SO(4) torus; compare Fig. 2.

U T3 T5

1� ð3; 2Þ1=3;1=3 Bulk 1� ð3; 1Þ1=3;�8=3 m 1� ð3; 2Þ1=3;1=3 w 2� ð1; 1Þ�1;�2 j

1� ð�3; 1Þ�4=3;�1=3 Bulk 1� ð�3; 1Þ�1=3;8=3 m 1� ð3; 2Þ1=3;1=3 	 2� ð1; 1Þ1;1 m

1� ð1; 2Þ1;0 Bulk 1� ð3; 1Þ1=3;�8=3 j 1� ð�3; 1Þ�4=3;�1=3 w 2� ð1; 1Þ1;�1 m

1� ð1; 2Þ�1;0 Bulk 1� ð�3; 1Þ�1=3;8=3 j 1� ð�3; 1Þ�4=3;�1=3 	 2� ð1; 1Þ�1;1 m

1� ð1; 1Þ2;1 Bulk 3� ð1; 1Þ1;3 m 1� ð�3; 1Þ2=3;�1=3 w 2� ð1; 1Þ�1;�1 m

1� ð1; 1Þ0;�2 Bulk 3� ð1; 1Þ�1;�3 m 1� ð�3; 1Þ2=3;�1=3 	 2� ð1; 1Þ1;�1 j

1� ð1; 1Þ0;2 Bulk 3� ð1; 1Þ1;3 j 1� ð�3; 1Þ�1=3;5=3 m 2� ð1; 1Þ1;1 j

8� ð1; 1Þ0;1=2 Bulk 3� ð1; 1Þ�1;�3 j 1� ð3; 1Þ1=3;�5=3 m 2� ð1; 1Þ�1;1 j

1� ð1; 1Þ0;0 Bulk 1� ð1; 1Þ1;�2 m 1� ð�3; 1Þ�1=3;5=3 j 2� ð1; 1Þ�1;�1 j

T2 1� ð1; 1Þ�1;2 m 1� ð3; 1Þ1=3;�5=3 j 1� ð1; 1Þ1;0 m

3� ð3; 1Þ�2=3;�2=3 Bulk 1� ð1; 1Þ1;�2 j 1� ð1; 2Þ�1;�1 w 1� ð1; 1Þ�1;0 m

1� ð3; 1Þ�2=3;1=3 Bulk 1� ð1; 1Þ�1;2 j 1� ð1; 2Þ�1;�1 	 1� ð1; 1Þ1;0 j

2� ð1; 2Þ�1;�1 Bulk 1� ð1; 1Þ0;3 w 1� ð1; 2Þ0;�1 m 1� ð1; 1Þ�1;0 j

3� ð1; 2Þ�1;0 Bulk 1� ð1; 1Þ0;�3 w 1� ð1; 2Þ0;1 m 1� ð1; 1Þ0;3 w

6� ð1; 1Þ0;2 Bulk 1� ð1; 1Þ0;3 	 1� ð1; 2Þ0;1 j 1� ð1; 1Þ0;�3 w

6� ð1; 1Þ0;�2 Bulk 1� ð1; 1Þ0;�3 	 1� ð1; 2Þ0;�1 j 1� ð1; 1Þ0;�3 	
6� ð1; 1Þ0;�1 Bulk 2� ð1; 1Þ0;�2 w 2� ð1; 2Þ0;0 m 1� ð1; 1Þ0;3 	
5� ð1; 1Þ0;1 Bulk 2� ð1; 1Þ0;2 w 2� ð1; 2Þ0;0 j 2� ð1; 1Þ0;�2 w

16� ð1; 1Þ0;�1=2 Bulk 2� ð1; 1Þ0;�2 	 1� ð1; 1Þ2;1 w 2� ð1; 1Þ0;2 w

21� ð1; 1Þ0;0 Bulk 2� ð1; 1Þ0;2 	 1� ð1; 1Þ2;1 	 2� ð1; 1Þ0;2 	
T4 1� ð1; 1Þ1;�2 m 2� ð1; 1Þ0;�2 	
3� ð�3; 1Þ2=3;2=3 Bulk 2� ð1; 1Þ1;2 m 3� ð1; 1Þ0;1 w

2� ð�3; 1Þ2=3;�1=3 Bulk 2� ð1; 1Þ�1;�2 m 2� ð1; 1Þ0;�1 w

1� ð1; 2Þ1;1 Bulk 1� ð1; 1Þ�1;2 m 2� ð1; 1Þ0;�1 	
3� ð1; 2Þ1;0 Bulk 2� ð1; 1Þ1;2 j 3� ð1; 1Þ0;1 	
6� ð1; 1Þ0;2 Bulk 1� ð1; 1Þ1;�2 j 12� ð1; 1Þ0;0 w

6� ð1; 1Þ0;�2 Bulk 1� ð1; 1Þ�1;2 j 12� ð1; 1Þ0;0 	
4� ð1; 1Þ0;�1 Bulk

6� ð1; 1Þ0;1 Bulk

8� ð1; 1Þ0;1=2 Bulk

12� ð1; 1Þ0;0 Bulk
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TABLE VII. Comparison of proton lifetime toMSTRING,MC, andMEX, in the case where no exotic matter lives in the bulk. In general,
an intermediate scale is needed to fit the low-energy data and the proton decay constraints. We have used �LATTICE ’ 0:011 [41]. We
note the solutions which will also work for model 1A in bold. Note that ~n refers to brane-localized exotics only and is defined in
Eq. (8).

~n MSTRING in GeV MC in GeV MEX in GeV �ðp ! eþ�0Þ in yr

ð2; 1; 0Þ 9:18� 1017 2:22� 1017 2:60� 109 1:77� 1038

ð4; 2; 0Þ 9:18� 1017 2:22� 1017 4:88� 1013 1:77� 1038

ð3; 2; 3Þ 9:88� 1017 2:22� 1017 2:08� 109 1:32� 1038

ð4; 3; 6Þ 1:08� 1018 2:22� 1017 1:59� 109 9:23� 1037

ð4; 2; 1Þ 8:26� 1017 6:65� 1016 5:43� 1013 2:19� 1036

ð4; 2; 2Þ 6:87� 1017 2:19� 1016 6:52� 1013 5:34� 1034

ð2; 1; 1Þ 6:87� 1017 2:19� 1016 6:18� 109 5:34� 1034

ð3; 2; 4Þ 7:07� 1017 2:16� 1016 5:68� 109 4:52� 1034

ð4; 3; 7Þ 7:28� 1017 2:13� 1016 5:21� 109 3:79� 1034

ð3; 1; 0Þ 5:43� 1017 8:20� 1015 8:25� 1013 2:70� 1033

ð4; 2; 3Þ 5:47� 1017 8:15� 1015 8:19� 1013 2:57� 1033

TABLE VI. Values of the �-function coefficients for matter living in the bulk, along with their embeddings into SU(6). [The group
branching rules for SUð6Þ ! SUð5Þ � Uð1Þ can be found in Ref. [57].] It is important to distinguish whether these are vector (V) or
chiral (C) multiplets.

SU(6) rep. Irrep. bþþ
3 bþþ

2 bþþ
Y Irrep. b��

3 b��
2 b��

Y

35 V ð8; 1Þ0 �9 0 0 C ð8; 1Þ0 3 0 0

V ð1; 3Þ0 0 �6 0 C ð1; 3Þ0 0 2 0

C ð1; 2Þ1 0 1=2 3=10 V ð1; 2Þ�1 0 �3=2 �9=10

C ð1;2Þ�1 0 1=2 3=10 V ð1; 2Þ1 0 �3=2 �9=10

20 C ð3; 2Þ1=3 1 3=2 1=10 C ð�3; 2Þ�1=3 1 3=2 1=10

C ð�3; 1Þ�4=3 1=2 0 4=5 C ð3; 1Þ4=3 1=2 0 4=5

C ð1; 1Þ2 0 0 3=5 C ð1; 1Þ�2 0 0 3=5

6þ �6 C ð1; 2Þ�1 0 1=2 3=10 C ð1; 2Þ1 0 1=2 3=10

C ð�3; 1Þ2=3 1=2 0 1=5 C ð3; 1Þ�2=3 1=2 0 1=5

TABLE V. Values of the �-function coefficients for the brane-localized exotic matter. These states do not have zero modes and come
from the T3 and T1=T5 sectors of the theory.

Irrep. Mult (model 2) b3 b2 bY

ð3; 1Þ1=3 þ ð�3; 1Þ�1=3 4 1 0 1=10

ð1; 2Þ0 þ ð1; 2Þ0 4 0 1 0

ð1; 1Þ1 þ ð1; 1Þ�1 24 0 0 3=10

TABLE IV. Exotic matter content in models 1A=B and 2 from [40]. Listed are the states’ quantum numbers under the MSSM and
hidden sector gauge groups, with the hypercharge denoted in the subscript. The brane-localized exotic matter in model 1 is a subset of
that in model 2.

Model Hidden sector Exotic matter irrep. Name

1 A=B SUð4Þ � SUð2Þ Brane 2� ½ð3; 1; 1; 1Þ1=3;2=3 þ ð�3; 1; 1; 1Þ�1=3;�2=3� vþ �v

Exotics 4� ½ð1; 2; 1; 1Þ0;� þ ð1; 2; 1; 1Þ0;�� mþm

1� ½ð1; 2; 1; 2Þ0;0 þ ð1; 2; 1; 2Þ0;0� yþ y

2� ½ð1; 1; 4; 1Þ1;1 þ ð1; 1; �4; 1Þ�1;�1� fþ þ �f�

14� ½ð1; 1; 1; 1Þ1;� þ ð1; 1; 1; 1Þ�1;�� sþ þ s�

Bulk 6� ½ð3; 1; 1; 1Þ�2=3;�2=3 þ ð�3; 1; 1; 1Þ2=3;2=3� �þ ��

Exotics 1� ½ð3; 1; 1; 1Þ�2=3;�1=3 þ ð�3; 1; 1; 1Þ2=3;1=3� dþ �d

1� ½ð1; 2; 1; 1Þ�1;�1 þ ð1; 2; 1; 1Þ1;1� ‘þ �‘

2 SOð8Þ � SUð2Þ Brane 4� ½ð3; 1; 1; 1Þ1=3;� þ ð�3; 1; 1; 1Þ�1=3;�� vþ �v

Exotics 2� ½ð1; 2; 1; 1Þ0;� þ ð1; 2; 1; 1Þ0;�� mþm

1� ½ð1; 2; 1; 2Þ0;0 þ ð1; 2; 1; 2Þ0;0� yþ y

2� ½ð1; 1; 1; 2Þ1;1 þ ð1; 1; 1; 2Þ�1;�1� xþ þ x�

20� ½ð1; 1; 1; 1Þ1;� þ ð1; 1; 1; 1Þ�1;�� sþ þ s�

Bulk 3� ½ð3; 1; 1; 1Þ�2=3�2=3 þ ð�3; 1; 1; 1Þ2=3;2=3� �þ ��

Exotics 1� ½ð3; 1; 1; 1Þ�2=3;2=3 þ ð�3; 1; 1; 1Þ2=3;�2=3� dþ �d

1� ½ð1; 2; 1; 1Þ�1;�1 þ ð1; 2; 1; 1Þ1;1� ‘þ �‘

3� ½ð1; 2; 1; 1Þ�1;0 þ ð1; 2; 1; 1Þ1;0� �þ ��
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TABLE VIII. Comparison of proton lifetime to MSTRING, MC, and MEX. In general, an intermediate scale is needed to fit the low-
energy data and the proton decay constraints. We have used �LATTICE ’ 0:011 [41]. Note that ~n refers to brane-localized exotics only
and is defined in Eq. (8). For details on the solution marked with an arrow ( ) ), see Sec. IV. We note the solutions which will also
work for model 1A in bold.

Bulk exotics ~n MSTRING in GeV MC in GeV MEX in GeV �ðp ! eþ�0Þ in yr

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ�þþ þ ½ð1; 2Þ1;� þ ð1; 2Þ�1;�Þ��� ð4; 3; 1Þ 9:96� 1017 7:74� 1017 4:50� 1013 1:90� 1040

ð4; 3; 2Þ 9:73� 1017 2:22� 1017 4:61� 1013 1:40� 1038

) ð2; 2; 2Þ 1:01� 1018 2:22� 1017 1:92� 109 1:19� 1038

ð3; 3; 5Þ 1:12� 1018 2:22� 1017 1:43� 109 7:97� 1037

ð4; 4; 8Þ 1:28� 1018 2:22� 1017 9:64� 108 4:73� 1037

ð3; 2; 0Þ 8:79� 1017 6:55� 1016 5:10� 1013 1:61� 1036

ð4; 3; 3Þ 9:06� 1017 6:50� 1016 4:95� 1013 1:38� 1036

ð3; 2; 1Þ 7:67� 1017 2:07� 1016 5:84� 1013 2:77� 1034

ð1; 1; 0Þ 7:67� 1017 2:07� 1016 4:45� 109 2:77� 1034

ð4; 3; 4Þ 7:82� 1017 2:05� 1016 5:73� 1013 2:47� 1034

ð2; 2; 3Þ 7:97� 1017 2:03� 1016 3:96� 109 2:20� 1034

ð3; 3; 6Þ 8:31� 1017 1:99� 1016 3:50� 109 1:71� 1034

ð4; 4; 9Þ 8:69� 1017 1:95� 1016 3:06� 109 1:31� 1034

ð4; 2; 0Þ 6:69� 1017 1:03� 1016 1:44� 1015 2:92� 1033

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ��� þ ½ð1; 2Þ1;� þ ð1; 2Þ�1;�Þ�þþ ð3; 1; 1Þ 1:01� 1018 2:22� 1017 1:92� 109 1:19� 1038

ð4; 2; 4Þ 1:12� 1018 2:22� 1017 1:43� 109 7:97� 1037

ð4; 1; 0Þ 7:67� 1017 2:07� 1016 5:84� 1013 2:77� 1034

ð3; 1; 2Þ 7:97� 1017 2:03� 1016 3:96� 109 2:20� 1034

ð4; 2; 5Þ 8:31� 1017 1:99� 1016 3:50� 109 1:71� 1034

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ�þþ þ ½ð1; 2Þ1;� þ ð1; 2Þ�1;�Þ�þþ ð2; 1; 0Þ 1:01� 1018 2:22� 1017 1:92� 109 1:19� 1038

ð3; 2; 3Þ 1:12� 1018 2:22� 1017 1:43� 109 7:97� 1037

ð4; 2; 0Þ 9:73� 1017 2:22� 1017 4:61� 1013 1:40� 1038

ð4; 3; 6Þ 1:28� 1018 2:22� 1017 9:64� 108 4:73� 1037

ð4; 2; 1Þ 9:06� 1017 6:50� 1016 4:95� 1013 1:38� 1036

ð4; 2; 2Þ 7:82� 1017 2:05� 1016 5:73� 1013 2:47� 1034

ð2; 1; 1Þ 7:97� 1017 2:03� 1016 3:96� 109 2:20� 1034

ð3; 2; 4Þ 8:31� 1017 1:99� 1016 3:50� 109 1:71� 1034

ð4; 3; 7Þ 8:69� 1017 1:95� 1016 3:06� 109 1:31� 1034

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ��� þ ½ð1; 2Þ1;� þ ð1; 2Þ�1;�Þ��� ð2; 1; 0Þ 9:36� 1017 2:22� 1017 2:45� 109 1:64� 1038

ð4; 2; 0Þ 9:36� 1017 2:22� 1017 4:79� 1013 1:64� 1038

ð3; 2; 3Þ 1:01� 1018 2:22� 1017 1:92� 109 1:19� 1038

ð4; 3; 6Þ 1:12� 1018 2:22� 1017 1:43� 109 7:97� 1037

ð4; 2; 1Þ 8:79� 1017 6:55� 1016 5:10� 1013 1:61� 1036

ð2; 1; 1Þ 7:67� 1017 2:07� 1016 4:45� 109 2:77� 1034

ð4; 2; 2Þ 7:67� 1017 2:07� 1016 5:84� 1013 2:77� 1034

ð3; 2; 4Þ 7:97� 1017 2:03� 1016 3:96� 109 2:20� 1034

ð4; 3; 7Þ 8:31� 1017 1:99� 1016 3:50� 109 1:71� 1034

TABLE IX. Subset of models listed in Tables VII and VIII which exhibit moderate hierarchies between all of the scales in the
problem, as pictured in Fig. 5, in the red box. Note that none of these results can be accommodated in model 1A.

Bulk exotics ~n MSTRING in GeV MC in GeV MEX in GeV �ðp ! eþ�0Þ in yr

None ð4; 2; 3Þ 5:47� 1017 8:15� 1015 8:19� 1013 2:57� 1033

ð3; 1; 0Þ 5:43� 1017 8:20� 1015 8:25� 1013 2:70� 1033

ð4; 2; 2Þ 6:87� 1017 2:19� 1016 6:52� 1013 5:34� 1034

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ�þþ þ ½ð1; 2Þ1;� þ ð1; 2Þ�1;�Þ��� ð4; 2; 0Þ 6:69� 1017 1:03� 1016 1:44� 1015 2:92� 1033

ð4; 3; 4Þ 7:82� 1017 2:05� 1016 5:73� 1013 2:47� 1034

ð3; 2; 1Þ 7:67� 1017 2:07� 1016 5:84� 1013 2:77� 1034

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ��� þ ½ð1; 2Þ1;� þ ð1; 2Þ�1;�Þ�þþ ð4; 1; 0Þ 7:67� 1017 2:07� 1016 5:84� 1013 2:77� 1034

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ�þþ þ ½ð1; 2Þ1 þ ð1; 2Þ�1Þ�þþ ð4; 2; 2Þ 7:82� 1017 2:05� 1016 5:73� 1013 2:47� 1034

½ð3; 1Þ2=3;� þ ð�3; 1Þ�2=3;�Þ��� þ ½ð1; 2Þ1 þ ð1; 2Þ�1Þ��� ð4; 2; 2Þ 7:67� 1017 2:07� 1016 5:84� 1013 2:77� 1034
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[27] R. Dermı̀šek and A. Mafi, Phys. Rev. D 65, 055002 (2002).
[28] L. J. Hall and Y. Nomura, Ann. Phys. (N.Y.) 306, 132

(2003).
[29] H. D. Kim and S. Raby, J. High Energy Phys. 01 (2003)

056.
[30] H.M. Lee, Phys. Lett. B 643, 136 (2006).
[31] W.M. Yao et al. (Particle Data Group), J. Phys. G 33, 1

(2006).
[32] T. Kobayashi, S. Raby, and R.-J. Zhang, Phys. Lett. B 593,

262 (2004).
[33] S. Förste, H. P. Nilles, P. K. S. Vaudrevange, and A.

Wingerter, Phys. Rev. D 70, 106008 (2004).
[34] T. Kobayashi, S. Raby, and R.-J. Zhang, Nucl. Phys. B704,

3 (2005).
[35] J. E. Kim and B. Kyae, Phys. Rev. D 77, 106008 (2008).
[36] W. Buchmüller, K. Hamaguchi, O. Lebedev, and M. Ratz,

Phys. Rev. Lett. 96, 121602 (2006).
[37] W. Buchmüller, K. Hamaguchi, O. Lebedev, and M. Ratz,

Nucl. Phys. B785, 149 (2007).
[38] O. Lebedev et al., Phys. Rev. Lett. 98, 181602 (2007).
[39] O. Lebedev et al., Phys. Lett. B 645, 88 (2007).
[40] O. Lebedev et al., Phys. Rev. D 77, 046013 (2008).
[41] Y. Aoki, C. Dawson, J. Noaki, and A. Soni, Phys. Rev. D

75, 014507 (2007).
[42] L. J. Hall, Y. Nomura, and D. R. Smith, Nucl. Phys. B639,

307 (2002).
[43] T. Kobayashi and N. Ohtsubo, Int. J. Mod. Phys. A 9, 87

(1994).
[44] T. Kobayashi, H. P. Nilles, F. Ploger, S. Raby, and M. Ratz,

Nucl. Phys. B768, 135 (2007).
[45] P. Ko, T. Kobayashi, J.-h. Park, and S. Raby, Phys. Rev. D

76, 035005 (2007).
[46] M. B. Green and J. H. Schwarz, Phys. Lett. 149B, 117

(1984).
[47] E. Witten, Phys. Lett. 149B, 351 (1984).
[48] M. Dine, N. Seiberg, and E. Witten, Nucl. Phys. B289, 589

(1987).
[49] A. Sagnotti, Phys. Lett. B 294, 196 (1992).
[50] M. Berkooz et al., Nucl. Phys. B475, 115 (1996).
[51] L. E. Ibáñez, D. Lust, and G.G. Ross, Phys. Lett. B 272,

251 (1991).
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