83 research outputs found

    Intraspecific variability in Phaeocystis antarctica?s response to iron and light stress

    Get PDF
    Phaeocystis antarctica is an abundant phytoplankton species in the Southern Ocean, where growth is frequently limited by iron and light. Being able to grow under low iron conditions is essential to the species’ success, but there have been hints that this ability differs among clones. Here, we compare the growth, cell size and chlorophyll a concentrations of four P. antarctica clones cultured under different iron and light conditions. Iron was provided either as unchelated iron (Fe′) or bound to the bacterial siderophore desferrioxamine B, representing, respectively, the most and least bioavailable forms of iron which phytoplankton encounter in the marine environment. The growth rate data demonstrate that the clones vary in their ability to grow using organically bound iron, and that this ability is not related to their ability to grow at low inorganic iron concentrations. These results are consistent at low and high light. Physiologically, only three of the four clones shrink or decrease the concentration of chlorophyll a in response to iron limitation, and only one clone decreases colony formation. Together, our data show that P. antarctica clones 1) respond to the same degree of iron limitation using different acclimation strategies, and 2) vary in their ability to grow under the same external iron and light conditions. This physiological diversity is surprisingly large for isolates of a single phytoplankton species.KEL was supported by the Robert and Delpha Noland Summer Internship, which funded her travel to and accommodation in Australia. The Australian Research Council (DP130100679 to MJE) is acknowledged for funds to support this study

    Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation

    Get PDF
    Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (Fv/Fm). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes). Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies.This work was supported by National Science Foundation grants OCE1233014 (BLN) and the Office of Polar Programs Postdoctoral Fellowship grant 0444148 (BLN). DRG was supported by National Institutes of Health 5P30ES007033-10. AH and MTM were supported by Natural Sciences and Engineering Research Council of Canada. RFS and PWB were supported by the New Zealand Royal Society Marsden Fund and the Ministry of Science. This work is supported in part by the University of Washington's Proteomics Computer Resource Centre (UWPR95794). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Iron Availability Influences Silicon Isotope Fractionation in Two Southern Ocean Diatoms (Proboscia Inermis and Eucampia Antarctica) and a Coastal Diatom (Thalassiosira Pseudonana)

    Get PDF
    The fractionation of silicon (Si) isotopes was measured in two Southern Ocean diatoms (Proboscia inermis and Eucampia Antarctica) and a coastal diatom (Thalassiosira pseudonana) that were grown under varying iron (Fe) concentrations. Varying Fe concentrations had no effect on the Si isotope enrichment factor (ε) in T. pseudonana, whilst E. Antarctica and P. inermis exhibited significant variations in the value of ε between Fe-replete and Fe-limited conditions. Mean ε values in P. inermis and E. Antarctica decreased from (± 1SD) −1.11 ± 0.15‰ and −1.42 ± 0.41 ‰ (respectively) under Fe-replete conditions, to −1.38 ± 0.27 ‰ and −1.57 ± 0.5 ‰ (respectively) under Fe-limiting conditions. These variations likely arise from adaptations in diatoms arising from the nutrient status of their environment. T. pseudonana is a coastal clone typically accustomed to low Si but high Fe conditions whereas E. Antarctica and P. inermis are typically accustomed to High Si, High nitrate low Fe conditions. Growth induced variations in silicic acid (Si(OH)4) uptake arising from Fe-limitation is the likely mechanism leading to Si-isotope variability in E. Antarctica and P. inermis. The multiplicative effects of species diversity and resource limitation (e.g., Fe) on Si-isotope fractionation in diatoms can potentially alter the Si-isotope composition of diatom opal in diatamaceous sediments and sea surface Si(OH)4. This work highlights the need for further in vitro studies into intracellular mechanisms involved in Si(OH)4 uptake, and the associated pathways for Si-isotope fractionation in diatoms.The Australian Research Council (DP130100679) and the Australian Antarctic Division (AAD Project 3120) are acknowledged for financial support of this wor

    The Growth Response of Two Diatom Species to Atmospheric Dust from the Last Glacial Maximum

    Get PDF
    Relief of iron (Fe) limitation in the surface Southern Ocean has been suggested as one driver of the regular glacial-interglacial cycles in atmospheric carbon dioxide (CO2). The proposed cause is enhanced deposition of Fe-bearing atmospheric dust to the oceans during glacial intervals, with consequent effects on export production and the carbon cycle. However, understanding the role of enhanced atmospheric Fe supply in biogeochemical cycles is limited by knowledge of the fluxes and ‘bioavailability’ of atmospheric Fe during glacial intervals. Here, we assess the effect of Fe fertilization by dust, dry-extracted from the Last Glacial Maximum portion of the EPICA Dome C Antarctic ice core, on the Antarctic diatom species Eucampia antarctica and Proboscia inermis. Both species showed strong but differing reactions to dust addition. E. antarctica increased cell number (3880 vs. 786 cells mL-1), chlorophyll a (51 vs. 3.9 μg mL-1) and particulate organic carbon (POC; 1.68 vs. 0.28 μg mL-1) production in response to dust compared to controls. P. inermis did not increase cell number in response to dust, but chlorophyll a and POC per cell both strongly increased compared to controls (39 vs. 15 and 2.13 vs. 0.95 ng cell-1 respectively). The net result of both responses was a greater production of POC and chlorophyll a, as well as decreased Si:C and Si:N incorporation ratios within cells. However, E, antarctica decreased silicate uptake for the same nitrate and carbon uptake, while P. inermis increased carbon and nitrate uptake for the same silicate uptake. This suggests that nutrient utilization changes in response to Fe addition could be driven by different underlying mechanisms between different diatom species. Enhanced supply of atmospheric dust to the surface ocean during glacial intervals could therefore have driven nutrient-utilization changes which could permit greater carbon fixation for lower silica utilization. Additionally, both species responded more strongly to lower amounts of direct Fe chloride addition than they did to dust, suggesting that not all the Fe released from dust was in a bioavailable form available for uptake by diatoms

    Why are biotic iron pools uniform across high- and low-iron pelagic ecosystems?

    Get PDF
    Dissolved iron supply is pivotal in setting global phytoplankton productivity and pelagic ecosystem structure. However, most studies of the role of iron have focussed on carbon biogeochemistry within pelagic ecosystems, with less effort to quantify the iron biogeochemical cycle. Here we compare mixed-layer biotic iron inventories from a low-iron (~0.06nmol L-1) subantarctic (FeCycle study) and a seasonally high-iron (~0.6nmol L-1) subtropical (FeCycle II study) site. Both studies were quasi-Lagrangian, and had multi-day occupation, common sampling protocols, and indirect estimates of biotic iron (from a limited range of available published biovolume/carbon/iron quotas). Biotic iron pools were comparable (~100±30pmol L-1) for low- and high-iron waters, despite a tenfold difference in dissolved iron concentrations. Consistency in biotic iron inventories (~80±24pmol L-1, largely estimated using a limited range of available quotas) was also conspicuous for three Southern Ocean polar sites. Insights into the extent to which uniformity in biotic iron inventories was driven by the need to apply common iron quotas obtained from laboratory cultures were provided from FeCycle II. The observed twofold to threefold range of iron quotas during the evolution of FeCycle II subtropical bloom was much less than reported from laboratory monocultures. Furthermore, the iron recycling efficiency varied by fourfold during FeCycle II, increasing as stocks of new iron were depleted, suggesting that quotas and iron recycling efficiencies together set biotic iron pools. Hence, site-specific differences in iron recycling efficiencies (which provide 20-50% and 90% of total iron supply in high- and low-iron waters, respectively) help offset the differences in new iron inputs between low- and high-iron sites. Future parameterization of iron in biogeochemical models must focus on the drivers of biotic iron inventories, including the differing iron requirements of the resident biota, and the subsequent fate (retention/export/recycling) of the biotic iron

    Diatom Proteomics Reveals Unique Acclimation Strategies to Mitigate Fe Limitation

    Get PDF
    Phytoplankton growth rates are limited by the supply of iron (Fe) in approximately one third of the open ocean, with major implications for carbon dioxide sequestration and carbon (C) biogeochemistry. To date, understanding how alteration of Fe supply changes phytoplankton physiology has focused on traditional metrics such as growth rate, elemental composition, and biophysical measurements such as photosynthetic competence (Fv/Fm). Researchers have subsequently employed transcriptomics to probe relationships between changes in Fe supply and phytoplankton physiology. Recently, studies have investigated longer-term (i.e. following acclimation) responses of phytoplankton to various Fe conditions. In the present study, the coastal diatom, Thalassiosira pseudonana, was acclimated (10 generations) to either low or high Fe conditions, i.e. Fe-limiting and Fe-replete. Quantitative proteomics and a newly developed proteomic profiling technique that identifies low abundance proteins were employed to examine the full complement of expressed proteins and consequently the metabolic pathways utilized by the diatom under the two Fe conditions. A total of 1850 proteins were confidently identified, nearly tripling previous identifications made from differential expression in diatoms. Given sufficient time to acclimate to Fe limitation, T. pseudonana up-regulates proteins involved in pathways associated with intracellular protein recycling, thereby decreasing dependence on extracellular nitrogen (N), C and Fe. The relative increase in the abundance of photorespiration and pentose phosphate pathway proteins reveal novel metabolic shifts, which create substrates that could support other well-established physiological responses, such as heavily silicified frustules observed for Fe-limited diatoms. Here, we discovered that proteins and hence pathways observed to be down-regulated in short-term Fe starvation studies are constitutively expressed when T. pseudonana is acclimated (i.e., nitrate and nitrite transporters, Photosystem II and Photosystem I complexes). Acclimation of the diatom to the desired Fe conditions and the comprehensive proteomic approach provides a more robust interpretation of this dynamic proteome than previous studies

    Iron uptake and physiological response of phytoplankton during a mesoscale Southern Ocean Iron enrichment.

    Get PDF
    Iron supply is thought to regulate primary production in high nitrate, low chlorophyll (HNLC) regions of the sea in both the past and the present. A critical aspect of this relationship is acquisition of iron (Fe) by phytoplankton, which occurs through a complex series of extracellular reactions that are influenced by Fe chemistry and speciation. During the first in situ mesoscale Fe-enrichment experiment in the Southern Ocean (Southern Ocean iron release experiment [SOIREE]), we monitored the uptake of Fe by three size classes of plankton and their ensuing physiological response to the Fe enrichment. Rates of Fe uptake from both inorganic Fe (Fe') and organic Fe complexes (FeL) were initially fast, indicative of Fe-limitation. After Fe enrichment phytoplankton down-regulated Fe uptake and optimized physiological performance, but by day 12 they had greatly increased their capacity to acquire Fe from FeL. The increase in Fe uptake from FeL coincided with a sixfold decrease in Fe' that followed the production of Fe-binding organic ligands. Phytoplankton were able to use organically bound Fe at rates sufficient to maintain net growth for more than 42 d. Adaptation to such shifts in Fe chemistry may contribute to bloom longevity in these polar HNLC waters

    Microbial control of diatom bloom dynamics in the open ocean

    Get PDF
    Diatom blooms play a central role in supporting foodwebs and sequestering biogenic carbon to depth. Oceanic conditions set bloom initiation, whereas both environmental and ecological factors determine bloom magnitude and longevity. Our study reveals another fundamental determinant of bloom dynamics. A diatom spring bloom in offshore New Zealand waters was likely terminated by iron limitation, even though diatoms consumed <1/3 of the mixed-layer dissolved iron inventory. Thus, bloom duration and magnitude were primarily set by competition for dissolved iron between microbes and small phytoplankton versus diatoms. Significantly, such a microbial mode of control probably relies both upon out-competing diatoms for iron (i.e., K-strategy), and having high iron requirements (i.e., r-strategy). Such resource competition for iron has implications for carbon biogeochemistry, as, blooming diatoms fixed three-fold more carbon per unit iron than resident non-blooming microbes. Microbial sequestration of iron has major ramifications for determining the biogeochemical imprint of oceanic diatom blooms. Citation: Boyd, P. W., et al. (2012), Microbial control of diatom bloom dynamics in the open ocean, Geophys. Res. Lett., 39, L18601

    Climate change impacts on US agriculture and forestry: benefits of global climate stabilization

    Get PDF
    Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7billionto32.7 billion to 54.5 billion over the period 2015–2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.United States. Environmental Protection Agency. Climate Change Division (Contract EP-BPA-12-H-0023, Call Order EP-B13H-00143
    • …
    corecore