8 research outputs found

    Post-Little Ice Age development of a High Arctic paraglacial beach complex

    Get PDF
    We reconstruct the behaviour of a High Arctic gravel-dominated beach complex that has developed in central Spitsbergen, Svalbard, since the end of the Little Ice Age (LIA). The studied coastal environment in northern Billefjorden (Petuniabukta) is characterised by limited wave action and ephemeral sediment delivery from non-glaciated, mainly snow-fed fans and talus slopes. Aerial photographic evidence and morpho-sedimentological observations of a beach-ridge plain and spit complex in northern Billefjorden reveal a dynamic coastal system. During the post-LIA period, a prominent coastal barrier at the mouth of the Ebbaelva migrated seawards several tens of metres and prograded northwards to form new spit systems, each > 150 m in length. The post-LIA coastal evolution occurred in two main phases. In the first half of the 20th century, increased paraglacial sediment released by retreating land-based glaciers led to the development of a subaqueous spit platform and the progradation of an ebb-tide delta into the mouth of the Ebbaelva, diverting its mouth to the northwest. In the second half of the 20th century, the barrier prograded onto this platform, promoting the development of three massive spits. Sedimentological data suggest that changes in beach-ridge composition that occurred during the 20th century are linked to episodic sediment delivery from an adjacent permafrost and snow-fed alluvial fan and delta system. Our work provides a basis for a new model of paraglacial barrier development that recognises the fundamental role of climate and sediment supply as two intimately connected processes that control coastal development in the High Arctic over decadal to centennial timescales

    Cryo-conditioned rocky coast systems: A case study from Wilczekodden, Svalbard

    Get PDF
    This paper presents the results of an investigation into the processes controlling development of a cryo-conditioned rock coast system in Hornsund, Svalbard. A suite of nested geomorphological and geophysical methods have been applied to characterise the functioning of rock cliffs and shore platforms influenced by lithological control and geomorphic processes driven by polar coast environments. Electrical resistivity tomography (ERT) surveys have been used to investigate permafrost control on rock coast dynamics and reveal the strong interaction with marine processes in High Arctic coastal settings. Schmidt hammer rock tests, demonstrated strong spatial control on the degree of rock weathering (rock strength) along High Arctic rock coasts. Elevation controlled geomorphic zones are identified and linked to distinct processes and mechanisms, transitioning from peak hardness values at the ice foot through the wave and storm dominated scour zones to the lowest values on the cliff tops, where the effects of periglacial weathering dominate. Observations of rock surface change using a traversing micro-erosion meter (TMEM) indicate that significant changes in erosion rates occur at the junction between the shore platform and the cliff toe, where rock erosion is facilitated by frequent wetting and drying and operation of nivation and sea ice processes (formation and melting of snow patches and icefoot complexes). The results are synthesised to propose a new conceptual model of High Arctic rock coast systems, with the aim of contributing towards a unifying concept of cold region landscape evolution and providing direction for future research regarding the state of polar rock coasts

    Terrestrial processes affecting unlithified coastal erosion disparities in central fjords of Svalbard

    No full text
    Terrestrial influences of coastal cliff morphology and hydrological impact on coastal erosion in unlithified cliff sediments in the inner fjords of Svalbard are assessed. Differential global positioning system measurements have been taken annually over the past two to four years at four field sites in central Svalbard. Measurements were combined with aerial imagery using ArcGIS and the Digital Shoreline Analysis System to calculate rates of erosion in varying geomorphological cliff types. A total of 750 m of coast was divided into two main cliff types: ice-poor and ice-rich tundra cliffs and further divided based on their sediment depositional character and processes currently acting upon sediments. The results show that the most consistent erosion rates occur in the ice-poor cliffs (0.34 m/yr), whereas the most irregular and highest rates occur in ice-rich cliffs (0.47 m/yr). Throughout the study, no waves were observed to reach cliff toes, and therefore erosion rates are considered to reflect an effect of terrestrial processes, rather than wave action. Terrestrial hydrological processes are the driving factors for cliff erosion through winter precipitation for ice-poor cliffs and summer precipitation for ice-rich cliffs. Sediment removal from the base of the cliffs appears to be mainly conducted by sea ice and the ice foot during break up as waves did not reach the base of the studied cliffs during the observed period
    corecore