1,027 research outputs found

    Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex

    Get PDF
    Brain-derived neurotrophic factor (BDNF) is a candidate molecule for regulating activity-dependent synaptic plasticity on the grounds of its expression pattern in developing visual cortex and that of its receptor, trkB (Castr¿n et al., 1992; Bozzi et al., 1995; Schoups et al., 1995; Cabelli et al., 1996), as well as the modulation of these patterns by activity (Castr¿n et al., 1992; Bozzi et al., 1995; Schoups et al., 1995). Infusing trkB ligands or their neutralizing agents, the trkB-IgG fusion proteins, into visual cortex alters the development and plasticity of ocular dominance columns (Cabelli et al., 1995; Riddle et al., 1995; Galuske et al., 1996 ; Gillespie et al., 1996; Cabelli et al., 1997). To test further the physiological role of BDNF, we studied a transgenic mouse that expresses elevated levels of BDNF in primary visual cortex (V1) postnatally (Huang et al., 1999). We found that unlike the infusion experiments, excess BDNF expressed in mouse visual cortex did not block ocular dominance plasticity. Instead, single neurons in V1 of the BDNF transgenic mice were as susceptible to the effects of monocular deprivation (MD) as neurons in wild-type mice, but only during a precocious critical period. At a time when V1 in the wild-type mouse responded maximally to a 4 d MD with a reduction in its response to deprived eye visual stimulation, the transgenic mouse V1 had already passed the peak of its precocious critical period and no longer responded maximally. This finding suggests a role for BDNF in promoting the postnatal maturation of cortical circuitry

    Sparse coding on the spot: Spontaneous retinal waves suffice for orientation selectivity

    Get PDF
    Ohshiro, Hussain, and Weliky (2011) recently showed that ferrets reared with exposure to flickering spot stimuli, in the absence of oriented visual experience, develop oriented receptive fields. They interpreted this as refutation of efficient coding models, which require oriented input in order to develop oriented receptive fields. Here we show that these data are compatible with the efficient coding hypothesis if the influence of spontaneous retinal waves is considered. We demonstrate that independent component analysis learns predominantly oriented receptive fields when trained on a mixture of spot stimuli and spontaneous retinal waves. Further, we show that the efficient coding hypothesis provides a compelling explanation for the contrast between the lack of receptive field changes seen in animals reared with spot stimuli and the significant cortical reorganisation observed in stripe-reared animals

    Gender differences in identities and their socio-structural correlates: how gendered lives shape parental and work identities

    Get PDF
    This study draws on identity theory to explore parental and work identities. It examined gender differences in identities, as well as the moderating role of gender in the effects of individuals’ socio-structural characteristics. A sample of 148 couples with young children completed extensive questionnaires. As hypothesized, couples’ paid work strategy moderated gender differences in the salience and centrality of parental and work identities. Whereas significant differences in identities were found between stay-at-home mothers and their breadwinning husbands, no differences were found among dual-earner couples. Moreover, men’s work identity centrality increased when they had more and younger children, whereas women’s work identity centrality decreased. Finally, men’s parental identity centrality increased with their income, whereas women’s parental identity centrality decreased the more they earned. These findings attest to the importance of examining differences within as well as between genders, by taking into account the interactive effects of gender with other socio-structural characteristics

    Observations of classical novae in outburst

    Get PDF
    The IUE obtained ultraviolet data on novae in outburst. The characteristics of every one of the outbursts are different. Optical and infrared data on many of the same novae were also obtained. Three members of the carbon-oxygen class of novae are presented

    Predicting participation in group parenting education in an Australian sample: The role of attitudes, norms, and control factors

    Get PDF
    We examined the theory of planned behavior (TPB) in predicting intentions to participate in group parenting education. One hundred and seventy-six parents (138 mothers and 38 fathers) with a child under 12 years completed TPB items assessing attitude, subjective norms, perceived behavioral control (PBC), and two additional social influence variables (self-identity and group norm). Regression analyses supported the TPB predictors of participation intentions with self-identity and group norm also significantly predicting intentions. These findings offer preliminary support for the TPB, along with additional sources of social influence, as a useful predictive model of participation in parenting education

    Identification of a Brainstem Circuit Regulating Visual Cortical State in Parallel with Locomotion

    Get PDF
    SummarySensory processing is dependent upon behavioral state. In mice, locomotion is accompanied by changes in cortical state and enhanced visual responses. Although recent studies have begun to elucidate intrinsic cortical mechanisms underlying this effect, the neural circuits that initially couple locomotion to cortical processing are unknown. The mesencephalic locomotor region (MLR) has been shown to be capable of initiating running and is associated with the ascending reticular activating system. Here, we find that optogenetic stimulation of the MLR in awake, head-fixed mice can induce both locomotion and increases in the gain of cortical responses. MLR stimulation below the threshold for overt movement similarly changed cortical processing, revealing that MLR’s effects on cortex are dissociable from locomotion. Likewise, stimulation of MLR projections to the basal forebrain also enhanced cortical responses, suggesting a pathway linking the MLR to cortex. These studies demonstrate that the MLR regulates cortical state in parallel with locomotion

    Toward a Manifold Encoding Neural Responses

    Get PDF
    Understanding circuit properties from physiological data presents two challenges: (i) recordings do not reveal connectivity, and (ii) stimuli only exercise circuits to a limited extent. We address these challenges for the mouse visual system with a novel neural manifold obtained using unsupervised algorithms. Each point in our manifold is a neuron; nearby neurons respond similarly in time to similar parts of a stimulus ensemble. This ensemble includes drifting gratings and flows, i.e., patterns resembling what a mouse would “see” running through fields. Regarding (i), our manifold differs from the standard practice in computational neuroscience: embedding trials in neural coordinates. Topology matters: we infer that, if the circuit consists of separate components, the manifold is discontinuous (illustrated with retinal data). If there is significant overlap between circuits, the manifold is nearly-continuous (cortical data). Regarding (ii), most of the cortical manifold is not activated with conventional gratings, despite their prominence in laboratory settings. Our manifold suggests organizing cortical circuitry by a few specialized circuits for specific members of the stimulus ensemble, together with circuits involving ‘multi-stimuli’-responding neurons. To approach real circuits, local neighborhoods in the manifold are identified with actual circuit components. For retinal data, we show these components correspond to distinct ganglion cell types by their mosaic-like receptive field organization, while for cortical data, neighborhoods organize neurons by type (excitatory/inhibitory) and anatomical layer. In summary: the topology of neural organization reflects well the underlying anatomy and physiology of the retina and the visual cortex

    Understanding visual map formation through vortex dynamics of spin Hamiltonian models

    Full text link
    The pattern formation in orientation and ocular dominance columns is one of the most investigated problems in the brain. From a known cortical structure, we build spin-like Hamiltonian models with long-range interactions of the Mexican hat type. These Hamiltonian models allow a coherent interpretation of the diverse phenomena in the visual map formation with the help of relaxation dynamics of spin systems. In particular, we explain various phenomena of self-organization in orientation and ocular dominance map formation including the pinwheel annihilation and its dependency on the columnar wave vector and boundary conditions.Comment: 4 pages, 15 figure
    corecore