18 research outputs found

    Influence of positional correlations on the propagation of waves in a complex medium with polydisperse resonant scatterers

    Get PDF
    We present experimental results on a model system for studying wave propagation in a complex medium exhibiting low frequency resonances. These experiments enable us to investigate a fundamental question that is relevant for many materials, such as metamaterials, where low-frequency scattering resonances strongly influence the effective medium properties. This question concerns the effect of correlations in the positions of the scatterers on the coupling between their resonances, and hence on wave transport through the medium. To examine this question experimentally, we measure the effective medium wave number of acoustic waves in a sample made of bubbles embedded in an elastic matrix over a frequency range that includes the resonance frequency of the bubbles. The effective medium is highly dispersive, showing peaks in the attenuation and the phase velocity as functions of the frequency, which cannot be accurately described using the Independent Scattering Approximation (ISA). This discrepancy may be explained by the effects of the positional correlations of the scatterers, which we show to be dependent on the size of the scatterers. We propose a self-consistent approach for taking this "polydisperse correlation" into account and show that our model better describes the experimental results than the ISA

    Observation of infinite-range intensity correlations above, at and below the 3D Anderson localization transition

    Full text link
    We investigate long-range intensity correlations on both sides of the Anderson transition of classical waves in a three-dimensional (3D) disordered material. Our ultrasonic experiments are designed to unambiguously detect a recently predicted infinite-range C0 contribution, due to local density of states fluctuations near the source. We find that these C0 correlations, in addition to C2 and C3 contributions, are significantly enhanced near mobility edges. Separate measurements of the inverse participation ratio reveal a link between C0 and the anomalous dimension \Delta_2, implying that C0 may also be used to explore the critical regime of the Anderson transition.Comment: 13 pages, 11 figures (main text plus supplemental information). Updated version includes an improved introductory paragraph, minor text revisions, a revised title and additional supplemental information on the experimental detail

    Observation of multifractality in Anderson localization of ultrasound

    Full text link
    We report the first experimental observation of strong multifractality in wave functions at the Anderson localization transition in open three-dimensional elastic networks. Our results confirm the recently predicted symmetry of the multifractal exponents. We have discovered that the result of multifractal analysis of the real data depends on the excitation scheme used in the experiment.Comment: 4 pages, 3 figure

    Can airborne ultrasound monitor bubble size in chocolate?

    Get PDF
    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product

    Localization of ultrasound in a three-dimensional elastic network

    Full text link
    After exactly half a century of Anderson localization, the subject is more alive than ever. Direct observation of Anderson localization of electrons was always hampered by interactions and finite temperatures. Yet, many theoretical breakthroughs were made, highlighted by finite-size scaling, the self-consistent theory and the numerical solution of the Anderson tight-binding model. Theoretical understanding is based on simplified models or approximations and comparison with experiment is crucial. Despite a wealth of new experimental data, with microwaves, light, ultrasound and cold atoms, many questions remain, especially for three dimensions. Here we report the first observation of sound localization in a random three-dimensional elastic network. We study the time-dependent transmission below the mobility edge, and report ``transverse localization'' in three dimensions, which has never been observed previously with any wave. The data are well described by the self-consistent theory of localization. The transmission reveals non-Gaussian statistics, consistent with theoretical predictions.Comment: Final published version, 5 pages, 4 figure

    Transmission of ultrasound through a single layer of bubbles

    No full text
    We investigate, both experimentally and theoretically, the effect of coupling between resonant scatterers on the transmission coefficient of a model system of isotropic scatterers. The model system consists of a monodisperse layer of bubbles, which exhibit a strong monopole scattering resonance at low ultrasonic frequencies. The layer was a true 2D structure obtained by injecting very monodisperse bubbles (with radius a ∼ 100 μm) into a yield-stress polymer gel. Even for a layer with a low concentration of bubbles (areal fraction, n π \pi a 2 , of 10-20%, where n is the number of bubbles per unit area), the ultrasonic transmission was found to be significantly reduced by the presence of bubbles (-20 to -50 dB) and showed a sharp minimum at a particular frequency. Interestingly, this frequency did not correspond to the resonance frequency of the individual, isolated bubbles, but depended markedly on the concentration. This frequency shift is an indication of strong coupling between the bubbles. We propose a simple model, based on a self-consistent relation, which takes into account the coupling between the bubbles and gives good agreement with the measured transmission coefficient

    Transmission of ultrasound through a single layer of bubbles

    No full text
    We investigate, both experimentally and theoretically, the effect of coupling between resonant scatterers on the transmission coefficient of a model system of isotropic scatterers. The model system consists of a monodisperse layer of bubbles, which exhibit a strong monopole scattering resonance at low ultrasonic frequencies. The layer was a true 2D structure obtained by injecting very monodisperse bubbles (with radius a ∼ 100 μm) into a yield-stress polymer gel. Even for a layer with a low concentration of bubbles (areal fraction, n π \pi a 2 , of 10-20%, where n is the number of bubbles per unit area), the ultrasonic transmission was found to be significantly reduced by the presence of bubbles (-20 to -50 dB) and showed a sharp minimum at a particular frequency. Interestingly, this frequency did not correspond to the resonance frequency of the individual, isolated bubbles, but depended markedly on the concentration. This frequency shift is an indication of strong coupling between the bubbles. We propose a simple model, based on a self-consistent relation, which takes into account the coupling between the bubbles and gives good agreement with the measured transmission coefficient

    Assessment of breadmaking performance of wheat flour dough by means of frequency dependent ultrasound

    No full text
    Technological performance of wheat flour varies among different wheat varieties. Gluten plays a key role within the solid phase of dough in the formation and the retention of gas bubbles during breadmaking. Rheological tests are usually performed to predict breadmaking potential. The aim here was to investigate the ability of ultrasound to discriminate wheat doughs based on breadmaking qualities. The ultimate goal is the development of an on-line quality control system currently unavailable in the baked goods industry, rendering this work innovative. Samples were prepared from a strong wheat flour, with one control sample and one added with inulin and distilled monoglycerides, producing doughs of distinct breadmaking quality. Doughs were subjected to density determination, elongation tests, and ultrasound analysis. The ultrasound tests were performed in the frequency range of 300kHz-6MHz. Ultrasonic phase velocity increased with increasing frequency to about 2MHz, becoming constant and then decreasing from 3MHz for the control sample. Distinct differences in attenuation coefficient between the fibre-enriched and control doughs were observed. Ultrasound can potentially add to a better understanding of dough quality and can discriminate between doughs of contrasting properties
    corecore