After exactly half a century of Anderson localization, the subject is more
alive than ever. Direct observation of Anderson localization of electrons was
always hampered by interactions and finite temperatures. Yet, many theoretical
breakthroughs were made, highlighted by finite-size scaling, the
self-consistent theory and the numerical solution of the Anderson tight-binding
model. Theoretical understanding is based on simplified models or
approximations and comparison with experiment is crucial. Despite a wealth of
new experimental data, with microwaves, light, ultrasound and cold atoms, many
questions remain, especially for three dimensions. Here we report the first
observation of sound localization in a random three-dimensional elastic
network. We study the time-dependent transmission below the mobility edge, and
report ``transverse localization'' in three dimensions, which has never been
observed previously with any wave. The data are well described by the
self-consistent theory of localization. The transmission reveals non-Gaussian
statistics, consistent with theoretical predictions.Comment: Final published version, 5 pages, 4 figure