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Abstract. Aerated chocolate products consist of solid chocolate with the inclusion of bubbles 

and are a popular consumer product in many countries. The volume fraction and size 

distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For 

these reasons it is important to have an online real time process monitoring system capable of 

measuring their bubble size distribution. As these products are eaten by consumers it is 

desirable that the monitoring system is non contact to avoid food contaminations. In this work 

we assess the feasibility of using an airborne ultrasound system to monitor the bubble size 

distribution in aerated chocolate bars. The experimental results from the airborne acoustic 

experiments were compared with theoretical results for known bubble size distributions using 

COMSOL Multiphysics. This combined experimental and theoretical approach is used to 

develop a greater understanding of how ultrasound propagates through aerated chocolate and to 

assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these 

systems. The results indicated that a smaller bubble size distribution would result in an increase 

in attenuation through the product.  

1. Introduction 

There are many different varieties of chocolate bars available to consumers with one of the most 

popular being aerated chocolate bars. Aerated chocolate bars consist of a solid bar with the inclusion 

of many bubbles. The gas in the bubbles is usually a carbon dioxide mix and is added to the bars 

whilst the chocolate is in a liquid state. Once the chocolate solidifies, the nitrous oxide disperses in the 

atmosphere to be replaced by atmospheric gases. An important property of aerated chocolate bars is 

the volume fraction of gas and the bubble size distribution. These features have a significant effect on 

the production cost, sensory attributes and consumer perception of the product, therefore the bubble 

size distribution is monitored during production. Current techniques to monitor bubble size in these 

products consist of removing samples from the production line, breaking the bar to expose the bubbles 

and making a visual observation of the bubble size distribution. This method is far from ideal as the 

classification of bubble size is subjective, and can often only identify undesirable bubble sizes in 

products long after the fault has occurred. There is an industry need for online real time techniques 

capable of monitoring the bubble size in these products to optimise the manufacturing process, ensure 

product consistency and minimise production waste.  Acoustic and optical techniques do exist to 
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measure bubbles sizes in systems such as the fermentation process [1] but the majority of these have 

only been utilised in liquid systems. Acoustic techniques are well developed and employed for 

measuring dispersed phase size of droplets in emulsions [2, 3] although it should be remembered that 

systems with bubbles are very different. Existing acoustic techniques comprise of either listening to 

the sound of moving or collapsing bubbles (in a liquid system) or transmitting ultrasound through the 

systems [4-7]. Most active transmission technique require multiple measurements on the system under 

investigation and can require complex data analysis rendering them unsuitable for an online 

measurement system on a fast moving production line due to the time required to make multiple 

measurements and process the data.  

For process monitoring in the food industry there is a need for non contact and non invasive 

techniques as contact could risk contamination of the food and potentially impact the process. This 

would make most acoustic techniques unsuitable as the transducers are generally in contact with the 

object under inspection. One solution would be to use a non contact air coupled system. This 

technique works by transmitting an acoustic pressure wave from one transducer through air, the 

product under investigation and through air again before the wave is detected by the receiver. The 

properties of the tested food will affect the received signal so it is possible to infer information about 

this product from the characteristics of the received pulse. Airborne ultrasound systems have being 

used to detect foreign bodies in food products [8] but to the authors knowledge no studies have being 

performed using the technique to monitor bubble sizes in aerated chocolate products. 

Computational modelling techniques exist to study how ultrasound will propagate through systems 

such as aerated chocolate bars and can be used to study the effects of varying experimental parameters 

such as transducer frequency and location. If a well validated model is constructed it can be used to 

optimise the design process of new instrument development by performing a large number of virtual 

experiments which would be costly both in time and monetary terms to perform with actual 

experiments. 

The purpose of this work is to use a combined experimental and modelling approach to assess the 

feasibility of using airborne ultrasound to monitor bubble size distributions in aerated chocolate bars. 

This was achieved by constructing two model two dimensional aerated chocolate products from straws 

and comparing the acoustic results with those from a COMSOL model with the same geometry. 

Straws were chosen as they have the same cross sectional area across their length so a direct 

comparison can be made to the 2D computational model. Experimental measurements were then made 

on two aerated chocolate bars known to have different bubble size distributions. These results were 

compared with two dimensional simulation results in which the geometry is a cross sectional area with 

a bubble size distribution representative of the corresponding aerated bar. The representative cross 

sectional area was determined by slicing each of the aerated chocolate bars, photographing the 

exposed area and using image analysis to calculate the bubble size distribution. Since the surface 

topography and material property is known to affect airborne ultrasound propagation this was also 

investigated experimentally in order to understand ultrasound propagation in these systems and to 

determine if the variations in ultrasound results are dominated by the bubble size distribution or other 

properties of the aerated product. This information will help determine the feasibility of developing an 

airborne ultrasound system for online real time monitoring of bubble size distribution. 

Ultimately this research will provide valuable information into the viability of using airborne 

ultrasound as a method to monitor bubble size distribution in aerated chocolate bars online in real 

time.    

This paper will start with a description of the experimental system and how it was used followed by 

how the computational model was developed. Where possible the model was constructed to represent 

the experiment as closely as possible. The results and discussion will be combined into a single 

section. First the experiment and simulation results will be presented and compared for the straws. 

Next the experimental and simulation results will be presented and compared for the actual aerated 

chocolate. The final section of the results and discussion will experimentally study the affect of the 

topography and surface condition on aerated chocolate bars.  
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2. Experimental methods 

2.1 Airborne ultrasound system 

For all measurements a bespoke airborne ultrasound system was used. This system can be seen in 

Figure 1. The set up comprises of a pair of Ultran non contact transducers (1). Three different pairs of 

transducers were used. One with a central frequency of 50 KHz (NCG50-S25), one with a central 

frequency of 140 KHz (NCG140-S38) and one with a central frequency of 200 KHz (NCG200-S38). 

Each pair of transducers was separated by a distance of 76 mm as this is the focal distance of all 

transducers. The transducers were attached to a robotic stage so they could be automatically moved 

over the aerated chocolate or straws. The straws or aerated chocolate were place at the centre distance 

between the transducers using a mould with the bottom cut away (2). This was to ensure that the sound 

wave only travelled though air and the sample under inspection. Both transducers were attached to a 

handy scope HS3 USB oscilloscope (3). This was controlled by purpose built Labview software. The 

software was used to send and receive the ultrasound pulse and analyse the received signal. The 

software also controlled the robotic stage. As ultrasound is highly attenuated in air both the transmitted 

and received pulse were amplified using an  A 303 high voltage amplifier and modulator ( A A lab 

systems, Israel) (4) for the transmitted pulse and  THS4022 board (Texas instruments, USA) (5) for 

the received signal.  

 

Figure 1. Airborne ultrasound system. 

2.2 Experiments performed 

Three sets of experiments were performed using the airborne ultrasound system:  

1. Small and large straw configuration  

2. Aerated chocolate bars with small and large bubble size distribution 

3. B Scan along the length of an aerated bar with different surface conditions   

Each set of experiments measurements were made with all three pairs of airborne ultrasound 

transducers. For each transducer the transmitting frequency was selected as the central frequency of 

the transducer pair (50, 140, 200 KHz). The transmitted pulse was 50 μs seconds long and had a 

sinusoidal shape function with a period twice that of the transmitted pulse duration. For all 

experiments only the attenuation of the ultrasound pulse was measured. Initially a measurement was 

made through air alone so that all the attenuation results could be presented relative to air. For this 
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calibration measurement the transmitted amplitude was set to 0.01 V. When the straws or aerated 

chocolate was placed between the transducers the transmitting amplitude was increased to 6V. Once 

the measurement was made through air the received pulse was saved in the software. The amplitude of 

all other received pulses from the experiments was increased so that they matched this reference 

amplitude and the attenuation could be calculated. For the final set of experiments the pair of airborne 

transducers was scanned along the length of an aerated chocolate bar using the bespoke robotic 

platform. The purpose of these experiments was to determine the effect that the shape of the chocolate 

would have on the ultrasound attenuation. This is important as few chocolate bars are flat so the effect 

the shape has on ultrasound attenuation must be studied. If the shape has more of an effect than the 

bubble size distribution it may make the development of a process monitoring system difficult. In 

addition to studying the effect of aerated chocolate bar topography the surface condition of the 

chocolate may affect the attenuation. This was studied by placing small chocolate crumbs or an oil 

layer on the top and bottom of the bar for a particular area and then scanning the airborne transducers 

over the length of the bar. For these experiments the transducers were positioned in the center width of 

the bar and scanned along the length by 80 mm. Figure 8 A and B show the region of the bar scanned. 

For each scan a measurement was made every 0.5 mm.  

2.3 Result representation 

There are many different methods used to analyse acoustic propagation through a system such as 

speed of sound or signal frequency content but it was decided to study only the attenuation through the 

straws or aerated system. This method was chosen as the ultimate aim is to develop an online real time 

system so we wanted to minimize the amount of signal analysis required. This was also the rationale 

as to why we only used the single central frequency for each transducer. Spectroscopy techniques are 

capable and successful at measuring bubble size distributions but they require algorithms to compute 

the band width and the dispersive effects of each transducer and would not be suitable using the 

current system and may not be suitable for a real-time system with temporal changes. For all results 

presented in this paper the peak amplitude of the received pulse was measured. This was then 

compared to the amplitude of the received pulse which had only travelled through air so that the 

attenuation (relative to air) could be measured for each of the experiments using the equation below. 

                                                          

The 600 represents the voltage increase for the transmitted pulse (0.01 to 6) and the peak amplitude 

difference is the difference in amplitude between the received pulse which has travelled through air 

and the pulse which had travelled through the straws or aerated chocolate bar. When measuring the 

peak amplitude of the received pulse it was important that this was measured on the section of the 

received wave which had travelled through the straws or aerated chocolate bar. This was achieved by 

windowing the received signal. Ten measurements were made for each experiment and the average 

was recorded. For each measurement the aerated chocolate bar was removed and replaced so the error 

associated with repeated changes in location could be observed. For the experimental results the 

attenuation on the figures is the average of the ten measurements and the error bars represent the 

standard deviation.   

2.4 Image analysis of aerated chocolate 
 

The aerated chocolate was sliced so that the bubble size distribution was exposed. This was done for 

two aerated chocolate bars, one which was known to include abnormally large bubbles and one which 

was known to include abnormally small bubbles. The exposed cross section area was photographed 

using a Canon 500D digital Camera and subsequent image analysis was performed using ImageJ [9]. 

The image was cropped so that only the area containing the bubbles remained; this was then enhanced 
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and converted to a binary image. A water shedding function was employed so that the individual 

bubbles could be seen and the particle size function was used to calculate the average area of the 

bubbles and generate an outline of the bubbles which could be used in the COMSOL model. From the 

ImageJ results if we assume that the bubbles are spherical in size the average radius of the small 

bubble size distribution is 0.48 mm and the average radius of the large bubble size distribution is 0.56 

mm.      

 

 

 
 

Figure 2. Aerated chocolate bar cross sections and representative bubble 

size distributions. 

 

 

3. Computation modelling 

 

3.1 Model definition 

A computational model was created using COMSOL 4.3a to simulate how ultrasound propagates 

through aerated products. Four models were made, one for the small straws, one for the large straws, 

one for the aerated chocolate with a small bubble size distribution and one for the aerated chocolate 

with a large bubble size distribution. All models used the COMSOL transient pressure acoustics model 

and were created in two dimensions. Although the actual aerated chocolate bars would be more 

representative in a three dimensional model, the small element size and simulation time step required 

to accurately model the acoustic propagation in 3D would increase the simulation duration to an 

unacceptable time with the current computational setup.  

 

3.2 Geometry 

The Geometry of the COMSOL model can be seen in Figure 3 A, The horizontal line at the bottom 

represents the transmitting transducer and the horizontal line at the top represents the receiving 

transducer. Both of these lines have representative dimensions of the airborne ultrasound transducers 

used for the experiments. The arrow in this diagram represents the acoustic propagation path. The 

geometry of the straws can be seen in Figure 3 B and C. The size number and wall thickness of the 

straws was modelled with the dimensions used in the airborne experiments. The geometry for the 

aerated chocolate consisted of a rectangle with height 13 mm and width 44 mm (approximate 

dimensions of aerated chocolate bars used). The two dimensional images of the small and large bubble 

size distributions calculated from image analysis (Figure 2 C and 2 D) were placed in the centre of 

these rectangles. The two horizontal lines (representing transmitting and receiving transducers were 

separated by a distance of 76mm as was used in the experiment.  

A B 

C D 
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  Figure 3. Computational model geometry, A: Model domain with transducers straws  

  and air. B: Geometry of small straws, C: Geometry of large straws. 

 

3.3 Acoustic wave propagation 

To simulate the ultrasound propagation the bottom horizontal line experienced a plane wave radiation. 

Three different frequencies of this pulse were simulated; these were 50, 140 and 200 KHz. These were 

the same frequencies used in the airborne experiments. Each transmitted pulse was given a duration 

and shape identical to the experiments. The ultrasound pressure wave propagated through the air and 

aerated chocolate in the model and was detected at the top horizontal line in Figure 3 A, this 

represented the receiver transducers. The pressure was integrated across this line as is the case in 

acoustic transducers.  

 

3.4 Material properties 

The three materials used in the simulations were air, chocolate and paper (for the straws). The 

important information for the ultrasound propagation was the longitudinal speed of sound and the 

material's density. Air is a well defined property within the software so already had the required 

values. For chocolate and paper these material properties can be seen in Table 1. For the speed of 

sound of the chocolate a non aerated bar of the same chocolate was produced and the speed of sound 

was measured experimentally using a contact ultrasound system. The density of the chocolate was 

calculated by weighing an amount of known volume. The speed of sound and density of the paper 

straws was measured using similar techniques. 

 

Table 1. Simulation material properties 

 Longitudinal 

Speed of sound 

(m/s) 

Density 

(Kg/m
3
) 

Chocolate 1500  1325    

Paper 1325  800    

 

 

3.5 Finite element mesh 

The geometry of the system was discretised using a finite element mesh. A free triangular mesh was 

used for all models. An important aspect is the size and number of mesh elements utilised as this 

governs the accuracy, precision and time duration of the simulation. A trade off always exists to this 

extent. Adopting the method of Mylavarapu and Boddapati [10] the maximum element size used was 

A B 

Receive 

Transmit 

C 

Transmit 

Receive 
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the ultrasound pulse wavelength divided by ten. This results in ten elements for each cycle of the 

waveform. The wavelength was calculated from the speed of sound and the transmitted frequency 

used. 

 

3.6 Solver configurations 

All simulations used a single time dependent solver. The selection of the simulation time step is 

important as it controls the accuracy resolution and simulation duration. Mylavarapu and Boddapati 

[10] stated that the simulation time step should be less than ((wavelength/10)/speed of sound). This 

approach was used in this work. The longitudinal speed of sound used in this equation was chosen as 

the highest value for a given simulation (paper or chocolate) to give the smallest critical time step and 

ensure mathematical stability. 

 

3.7 Data analysis 

To ensure that the simulation results could be compared directly to the experiments the measurements 

were made in the same way. First a simulation was performed without the presence of the straws or 

aerated chocolate geometry and the maximum amplitude of the received pulse was recorded. For all 

subsequent simulations through the straws and the aerated chocolate the peak amplitude of the 

received pulse was recorded so that the attenuation is decibel relative to air could be calculated. 
 

4. Results and discussion 
 

4.1 Model 2D straw systems 

Figure 4 display the results for attenuation through the small and large straw configurations at the 

three different frequencies. Generally the attenuation is greater at a higher frequency which is usual for 

acoustic results as attenuation increases with the propagating frequency squared. For all frequencies 

the attenuation was highest in the smaller straws. As the total height of the straws was the same the 

smaller straws consisted of more straws in the height of material. This resulted in an increased number 

of interfaces reflecting the sound and an overall increase in attenuation. The difference in attenuation 

between the small and large straws was not identical at all frequencies. At 50 KHz there was a 

difference of around 3 dB whereas at 140 and 200 KHz the differences were approximately 0.5 and 1 

dB respectively. The results from the simulations with the straw geometries showed the same trends as 

from the experiment. The attenuation was found to increase with frequency and the small straws had 

the highest attenuation. Consistent with the experiments the difference in attenuation between the 

small and large straws was greatest for the 50 and 200 KHz transducers. It should be noted that the 

three different pairs of transducers used all had slightly different geometries which might influence 

some of the results. Quantitatively the attenuation was found to be higher in the experimental system 

and the attenuation difference between the small and large straw geometries were greater from the 

simulations.  
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Figure 4. Airborne attenuation measurements 

on model systems of small and large straws. 

 

Figure 5. COMSOL attenuation simulations on 

model systems of small and large straws. 

These results are very encouraging as they indicate that airborne ultrasound may distinguish between a 

small and large bubble size distribution in a model two dimensional system. Although inversion 

methods have not been used to calculate an actual bubble size distribution from the acoustic data the 

results do show that an indication of size can be taken from one simple ultrasound measurement. This 

would allow for quick online determination if a sudden change had occurred in the bubble size 

distribution. A system would require calibration with a known good bubble size distribution but 

calibration is common practice for online monitoring systems and the advantage of a processing 

monitoring system which can instantly identify a change in a product property such as bubble size has 

large commercial benefits. To understand how beneficial an airborne ultrasound system would be for 

monitoring bubble size distribution it is important to understand and investigate all factors of the 

product which will affect ultrasound propagation so that it can be determined how accurately can the 

system detect changes in the bubble size distribution. It should be noted that these experiments and 
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simulations were only performed at two representative size distributions; more sizes and distributions 

should be studied to fully determine the capability of such a system. 

The computational model predicts the main features of the experiments. The use of computational 

models is becoming increasingly popular since they offer many benefits. Once a model is developed 

and validated with suitable experiments such as those describe here, it can then be used to aid the 

understanding of the science of the system under question as well as aid the development process of a 

process monitoring system. The model developed during this research could be used to simulate a 

wide range of frequencies and transducer geometries to find the most suitable one for studying the 

aerated product under inspection. The model can also be used to optimise parameters in the system 

such as pulse repetition frequency and precise transducer location. These simulation results could then 

be used to minimise the time and cost required to develop the process monitoring system and increase 

the possibility of producing a successful commercial system. 

4.2 Chocolate with different bubble size distributions 

Experimental results from the airborne experiments on aerated chocolate bars with a small and large 

bubble size distribution show that attenuation increases with frequency and is higher in the bar with 

the small bubble size distribution. These results are consistent with the measurements for the model 

straw system. The difference in attenuation between the small and large bubble size distributions was 

found to be larger for the lower frequencies, with a generally greater differential than for the straws 

experiments. Image analysis revealed that the small and large bubble sized aerated bars had 

approximately the same volume fraction of gas. For the small size distribution this would result in 

more scattering objects (bubbles) in the active acoustic area resulting in the observed increase in 

attenuation. 

 

Figure 6. Experimental attenuation results from airborne 

ultrasound system using aerated chocolate bars with a small 

and large bubble size distribution. 
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Figure 7. Simulation attenuation results from airborne 

ultrasound system using aerated chocolate bars with a small 

and large bubble size distribution. 

Simulation results for models with representative small and large bubble size distributions (taken from 

image analysis of bars) indicate that attenuation increases with frequency although very little 

difference was observed for the two different bubble sizes. For all frequencies the attenuation was 

greater for the small bubble size distribution but this was only really noticeable for the simulations at 

200 KHz. This difference was small compared with all other experimental and simulation results 

presented in this research.  

The COMSOL model used was a two dimensional representation of the system and this could account 

for the difference between the experimental and simulations results. The straws experiment and 

models had almost identical geometry and comparable results. The geometry used in the models of the 

aerated chocolate bars were much simpler than the actual real life system as the image analysis only 

generated a representation of the bubble size distribution and contained far fewer bubbles than are 

known to exist in the actual products. The bubble area fraction from the image analysis was 35.5% for 

the small bubbles and 34% for the large bubbles. For the actual aerated products it is known that the 

aerated area size fraction is around 50%. This difference is accounted for by the lack of small bubbles 

detected by the image analysis technique and it may be that these small bubbles have the greatest 

effect on attenuation. With more accurate image recording and processing it will be possible to build 

more accurate models capable of predicting the experimental system. 

4.3 Effect of chocolate surface condition 

B scans along the length of the aerated chocolate bars were performed to study the effect of the 

topography of the products. The surface condition was also changed on certain sections of the bars by 

adding either chocolate crumbs or an oil layer. The initial results showed that the attenuation through 

the aerated bars is sensitive to the bubble size distribution but it is important to understand the effect 

that other product factor may have on these results. This is to determine whether the airborne 

ultrasound system is actually sensitive enough to monitor bubble size distribution. The application of 

chocolate crumb was used to represent what may happen in a manufacturing environment and the oil 

layer was used to represent a different surface condition. The results of the B scans (Figure 8) showed 

that the topography of the chocolate products has a large affect on the attenuation with a variation of 
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approximately 15 dB. The attenuation was greatest at the side of one of the domes in the bar, this is 

most likely due to the incident ultrasound wave contacting an angled surface and having a larger 

proportion reflected away from the receiver than transmitting through the bar. The area at the top of an 

individual domed section had the lowest attenuation even though this is the region with the most 

aerated chocolate that the ultrasound pulse must travel through. The crumb layer had very little effect 

on the overall attenuation (Figure 8 D) with only a small increase in attenuation in this region. The oil 

layers did cause an increase in attenuation but this was only small (Figure 8 E). The average 

attenuation was calculated from all points along the length scan and shown in Table 2. It can be seen 

here that the scans with the surface conditions had a slightly higher average attenuation but this was 

only approximately 3 dB. 

 

Table 2. Average attenuation for different surface 

coatings 
 

 Average 

attenuation (dB) 

Standard  

deviation (dB) 

None 72.3 0.5    

Chocolate dust 75.2 1.2    

Oil 75.4 1    

The attenuation results for the aerated chocolate bars showed that at different frequencies the effect of 

the small and large bubble size distributions was between 3 and 12 dB. The topography of the bar 

affected the attenuation by a similar magnitude meaning that any online system would need to have an 

accurate way to know exactly where on the bar the acoustic measurement was made, and statistical 

techniques could also be used. Although this sounds challenging this is not as difficult as it appears. 

Possibilities include using a laser range finder device or using calibration and synchronization 

techniques with the current airborne ultrasound system. The results for varying surface conditions 

showed that these had a small effect on the attenuation but this was not as great as that caused by the 

topography or bubble size. These experiments actually had extreme versions of changes in surface 

properties so it is anticipated that the actual effect they would have on an industrial system would be 

less. 
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Figure 8. Airborne experiments and results along an aerated 

chocolate bar. A: the view of the side of the aerated bar. B: the 

actual length which was scanned. C: Attenuation results for an 

aerated bar as a function of length. D: Attenuation results for an 

aerated bar when chocolate crumbs were placed on the top and 

bottom of the bar at one end. E: Attenuation results for an aerated 

bar as a function of length when a thin oil layer was placed on the 

top and bottom of the bar at one end. 
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5. Conclusions 

The purpose of this work was to determine the feasibility of using attenuation measurements by an 

airborne ultrasound system to monitor bubble sizes distribution in aerated chocolate bars. A 

computational model of the monitoring system and aerated chocolate was built to investigate whether 

the model could predict the experimental results and be used to optimise the design process. 

Experiments and simulations were performed on a 2D model system comprising of straws and aerated 

chocolate bars with a small and large bubble size distributions. The effect of the chocolate bars shape 

and surface properties on the ultrasound measurements was also investigated experimentally. 

The results for the model two dimensional systems showed an increase in attenuation for the smaller 

straws and a good qualitative comparison between the experimental and simulation results. The results 

for the actual aerated chocolate bars also showed an increase in attenuation for the smaller bubble size. 

The simulations of the aerated bars did not show this affect. This was attributed to the model merely 

being a 2D representation of the experimental system whose image analysis may not fully represent 

the actual bubble size of the aerated chocolate product. The scans along the aerated bars showed that 

the shape of the bar had a great effect on the attenuation measurements but the surface condition (such 

as oil layer or chocolate crumbs) had little. 

From this work it is concluded that airborne ultrasound could be used to monitor bubble size 

distribution in aerated chocolate products using attenuation measurements. More testing will be 

required to determine how accurately the system can detect small changes as the current work only 

studied two aerated products, one with a small and one with a large bubble size distribution. The 

results are encouraging as they indicate that the current technique would be capable of identifying an 

undesirable small or large bubble size distribution. The surface topography of the bars had a great 

effect on the attenuation measurements so the location of the measurement on the product must be 

known for meaningful interpretation of the results.  

The computer simulations encouragingly recreated the experimental results for an identical geometry. 

With more precise modeling of the aerated chocolate products it will be possible to generate three 

dimensional models which could predict ultrasound propagation through the aerated bars and be used 

to aid the design process for an airborne ultrasound process monitoring system. 
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