27 research outputs found

    Warfarin doses for anticoagulation therapy in elderly patients with chronic atrial fibrillation

    Get PDF
    OBJECTIVE: Anticoagulation is a challenge for the prophylaxis of thromboembolic events in elderly patients with chronic atrial fibrillation. Stable anticoagulation is defined as the time within >70% of the therapeutic range. However, the dosage required to achieve stable anticoagulation remains unknown. The aim of this study was to analyze the warfarin dose necessary for the maintenance of stable oral anticoagulation therapy in elderly patients. METHODS: We analyzed 112 consecutive outpatients with atrial fibrillation who were >65 years of age, had received anticoagulation therapy with warfarin for more than 1 year and had a stable international normalized ratio between 2.0 and 3.0 for >6 months. The international normalized ratio was measured in the central laboratory using the traditional method. RESULTS: The patients were stratified according to the following age groups: <75 or >75 years and <80 or >80 years. The mean daily doses of warfarin were similar for patients <75 or >75 years (3.34+1.71 versus 3.26 +1.27 mg/ day, p = 0.794) and <80 or >80 years (3.36+ 1.49 versus 3.15 + 1.23 mg/day, p = 0.433). In 88 (79%) patients, the daily warfarin dose was between 2 and 5 mg/day; in 13 (11%) patients, the daily warfarin dose was <2.0 mg/day; and in 11 (10%) patients, the daily warfarin dose was >5.0 mg/day. The correlation between the daily warfarin dose and the international normalized ratio was 0.22 (p = 0.012). CONCLUSION: Stable anticoagulation was achieved in 80% of patients who received doses of 2 to 5 mg/day of warfarin, and the mean daily dose was similar across the age groups analyzed

    The involvement of multiple thrombogenic and atherogenic markers in premature coronary artery disease

    Get PDF
    OBJECTIVE: To examine the association of atherogenic and thrombogenic markers and lymphotoxin-alfa gene mutations with the risk of premature coronary disease. METHODS: This cross-sectional, case-control, age-adjusted study was conducted in 336 patients with premature coronary disease (;50% luminal reduction) or a previous myocardial infarction. The laboratory data evaluated included thrombogenic factors (fibrinogen, protein C, protein S, and antithrombin III), atherogenic factors (glucose and lipid profiles, lipoprotein(a), and apolipoproteins AI and B), and lymphotoxin-alfa mutations. Genetic variability of lymphotoxin-alfa was determined by polymerase chain reaction analysis. RESULTS: Coronary disease patients exhibited lower concentrations of HDL-cholesterol and higher levels of glucose, lipoprotein(a), and protein S. The frequencies of AA, AG, and GG lymphotoxin-alfa mutation genotypes were 55.0%, 37.6%, and 7.4% for controls and 42.7%, 46.0%, and 11.3% for coronary disease patients (p = 0.02), respectively. Smoking, dyslipidemia, family history, and lipoprotein(a) and lymphotoxin-alfa mutations in men were independent variables associated with coronary disease. The area under the curve (C-statistic) increased from 0.779 to 0.802 (

    Pharmaceutical Care Increases Time in Therapeutic Range of Patients With Poor Quality of Anticoagulation With Warfarin

    Get PDF
    Thromboembolic events are associated with high mortality and morbidity indexes. In this context, warfarin is the most widely prescribed oral anticoagulant agent for preventing and treating these events. This medication has a narrow therapeutic range and, consequently, patients usually have difficulty in achieving and maintaining stable target therapeutics. Some studies on the literature about oral anticoagulant management showed that pharmacists could improve the efficiency of anticoagulant therapy. However, the majority of these studies included general patients retrospectively. The aim of this study was to prospectively evaluate a pharmacist’s warfarin management in patients with poor quality of anticoagulation therapy (Time in the Therapeutic Range- TTR &lt; 50%). We included 268 patients with atrial fibrillation (AF) and without stable dose of warfarin (TTR &lt; 50%, based on the last three values of International Normalized Ratio-INR). We followed them up for 12 weeks, INR values were evaluated and, when necessary, the dose adjustments were performed. During the first four visits, patient’s INR was measured every 7 days. Then, if INR was within the target therapeutic range (INR: 2–3), the patient was asked to return in 30 days. However, if INR was out the therapeutic target, the patient was asked to return in 7 days. Adherence evaluation was measured through questionnaires and by counting the pills taken. Comparison between basal TTR (which was calculated based on the three last INR values before prospective phase) and TTR of 4 weeks (calculated by considering the INR tests from visits 0 to 4, in the prospective phase of the study) and basal TTR and TTR of 12 weeks (calculated based on the INR tests from visits 0 to 12, in the prospective phase of the study) revealed significant statistical differences (0.144 ± 0.010 vs. 0.382 ± 0.016; and 0.144 ± 0.010 vs. 0.543 ± 0.014, p &lt; 0.001, respectively). We also observed that the mean TTR of 1 year before (retrospective phase) was lower than TTR value after 12 weeks of pharmacist-driven treatment (prospective phase) (0.320 ± 0.015; 0.540 ± 0.015, p &lt; 0.001). In conclusion, pharmaceutical care was able to improve TTR values in patients with AF and poor quality of anticoagulation with warfarin

    Lipoprotein (a): Structure, Pathophysiology and Clinical Implications

    No full text
    The chemical structure of lipoprotein (a) is similar to that of LDL, from which it differs due to the presence of apolipoprotein (a) bound to apo B100 via one disulfide bridge. Lipoprotein (a) is synthesized in the liver and its plasma concentration, which can be determined by use of monoclonal antibody-based methods, ranges from < 1 mg to > 1,000 mg/dL. Lipoprotein (a) levels over 20-30 mg/dL are associated with a two-fold risk of developing coronary artery disease. Usually, black subjects have higher lipoprotein (a) levels that, differently from Caucasians and Orientals, are not related to coronary artery disease. However, the risk of black subjects must be considered. Sex and age have little influence on lipoprotein (a) levels. Lipoprotein (a) homology with plasminogen might lead to interference with the fibrinolytic cascade, accounting for an atherogenic mechanism of that lipoprotein. Nevertheless, direct deposition of lipoprotein (a) on arterial wall is also a possible mechanism, lipoprotein (a) being more prone to oxidation than LDL. Most prospective studies have confirmed lipoprotein (a) as a predisposing factor to atherosclerosis. Statin treatment does not lower lipoprotein (a) levels, differently from niacin and ezetimibe, which tend to reduce lipoprotein (a), although confirmation of ezetimibe effects is pending. The reduction in lipoprotein (a) concentrations has not been demonstrated to reduce the risk for coronary artery disease. Whenever higher lipoprotein (a) concentrations are found, and in the absence of more effective and well-tolerated drugs, a more strict and vigorous control of the other coronary artery disease risk factors should be sought

    Brazil nut ingestion increased plasma selenium but had minimal effects on lipids, apolipoproteins, and high-density lipoprotein function in human subjects

    No full text
    The Brazil nut (Bertholletia excelsa) of the Amazon region is consumed worldwide. It is rich in both monounsaturated fatty acids and polyunsaturated fatty acids and is known for its high selenium content. This study tested the hypothesis whether the consumption of this nut could affect the plasma lipids and apolipoproteins and some functional properties of the antiatherogenic high-density lipoprotein (HDL). Fifteen normolipidemic subjects aged 27.3 +/- 3.9 years and with body mass index of 23.8 +/- 2.8 kg/m(2) consumed 45 g of Brazil nuts per day during a 15-day period. On days 0 and 15, blood was collected for biochemical analysis, determination of HDL particle size, paraoxonase 1 activity, and lipid transfer from a lipoprotein-like nanoparticle to the HDL fraction. Brazil nut ingestion did not alter HDL, low-density lipoprotein cholesterol, triacylglycerols, apolipoprotein A-1, or apolipoprotein B concentrations. HDL particle diameter and the activity of antioxidative paraoxonase 1, mostly found in the HDL fraction, Were also unaffected. Supplementation increased the reception of cholesteryl esters (P <.05) by the HDL yet did not alter the reception of phospholipids, free cholesterol, or triacylglycerols. As expected, plasma selenium was significantly increased. However, the consumption of Brazil nuts for short duration by normolipidemic subjects in comparable amounts to those tested for other nuts did not alter serum lipid profile. The only alteration in HDL function was the increase in cholesteryl ester transfer. This latter finding may be beneficial because it would improve the nonatherogenic reverse cholesterol transport pathway. (c) 2008 Elsevier Inc. All rights reserved
    corecore