1,026 research outputs found

    Covering codes

    Get PDF

    Prediction of long and short time rheological behavior in soft glassy materials

    Full text link
    We present an effective time approach to predict long and short time rheological behavior of soft glassy materials from experiments carried out over practical time scales. Effective time approach takes advantage of relaxation time dependence on aging time that allows time-aging time superposition even when aging occurs over the experimental timescales. Interestingly experiments on variety of soft materials demonstrate that the effective time approach successfully predicts superposition for diverse aging regimes ranging from sub-aging to hyper-aging behaviors. This approach can also be used to predict behavior of any response function in molecular as well as spin glasses.Comment: 13 pages, 4 figure

    Subdiffusion and intermittent dynamic fluctuations in the aging regime of concentrated hard spheres

    Full text link
    We study the nonequilibrium aging dynamics in a system of quasi-hard spheres at large density by means of computer simulations. We find that, after a sudden quench to large density, the relaxation time initially increases exponentially with the age of the system. After a surprisingly large crossover time, the system enters the asymptotic aging regime characterized by a linear increase of the relaxation time with age. In this aging regime, single particle motion is strongly non-Fickian, with a mean-squared displacement increasing subdiffusively, associated to broad, non-Gaussian tails in the distribution of particle displacements. We find that the system ages through temporally intermittent relaxation events, and a detailed finite size analysis of these collective dynamic fluctuations reveals that these events are not spanning the entire system, but remain spatially localized.Comment: 11 pages; 10 fig

    Nonequilibrium Relaxations and Aging Effects in a Two-Dimensional Coulomb Glass

    Full text link
    The relaxations of conductivity have been studied in the glassy regime of a strongly disordered two-dimensional electron system in Si after a temporary change of carrier density during the waiting time t_w. Two types of response have been observed: a) monotonic, where relaxations exhibit aging, i.e. dependence on history, determined by t_w and temperature; b) nonmonotonic, where a memory of the sample history is lost. The conditions that separate the two regimes have been also determined.Comment: 4 pages; published versioi

    Boost invariant marginally trapped surfaces in Minkowski 4-space

    Full text link
    The extremal and partly marginally trapped surfaces in Minkowski 4-space, which are invariant under the group of boost isometries, are classified. Moreover, it is shown that there do not exist extremal surfaces of this kind with constant Gaussian curvature. A procedure is given in order to construct a partly marginally trapped surface by gluing two marginally trapped surfaces which are invariant under the group of boost isometries. As an application, a proper star-surface is constructed.Comment: 13 pages, comment added in section

    Evaluation of sweetpotato (Ipomoea batatas (L.) Lam.) germplasm from north-eastern Uganda through a Farmer Participatory Approach

    Get PDF
    Ugandan farmers grow many landrace sweetpotato varieties, but some of these are relatively low yielding and susceptible to pests. The objective of the present research was to involve farmers in a large-scale assessment of Ugandan farmers’ varieties to rapidly identify those with superior yield performance, pest resistance and consumer acceptance. One hundred sixty distinct farmers’ varieties collected from Lira, Soroti, Katakwi, Kumi and Pallisa Districts of North-eastern Uganda were evaluated in on-station trials. Trials were conducted at two sites (Serere Agricultural and Animal Research Institute and Arapai Agricultural College) in Soroti District in the second rainy season of 1999. Twenty-five farmers from surrounding areas participated in trial harvest at each site. At harvest, fresh storage root yield, foliage yield, and dry matter content were determined by researchers. Farmers observed a number of characteristics and rated each entry with respect to the following variables: general impression, dry matter content, pests, and defects. A strong positive correlation was observed between farmers’ general impression and yield and harvest index in the trials. Farmers selected 10 superior varieties from each trial for further multi-environment, on-station and on-farm trials. Coincidentally, nine of the selected varieties were common to both sites

    Large time dynamics and aging of a polymer chain in a random potential

    Full text link
    We study the out-of-equilibrium large time dynamics of a gaussian polymer chain in a quenched random potential. The dynamics studied is a simple Langevin dynamics commonly referred to as the Rouse model. The equations for the two-time correlation and response function are derived within the gaussian variational approximation. In order to implement this approximation faithfully, we employ the supersymmetric representation of the Martin-Siggia-Rose dynamical action. For a short ranged correlated random potential the equations are solved analytically in the limit of large times using certain assumptions concerning the asymptotic behavior. Two possible dynamical behaviors are identified depending upon the time separation- a stationary regime and an aging regime. In the stationary regime time translation invariance holds and so is the fluctuation dissipation theorem. The aging regime which occurs for large time separations of the two-time correlation functions is characterized by history dependence and the breakdown of certain equilibrium relations. The large time limit of the equations yields equations among the order parameters that are similar to the equations obtained in the statics using replicas. In particular the aging solution corresponds to the broken replica solution. But there is a difference in one equation that leads to important consequences for the solution. The stationary regime corresponds to the motion of the polymer inside a local minimum of the random potential, whereas in the aging regime the polymer hops between different minima. As a byproduct we also solve exactly the dynamics of a chain in a random potential with quadratic correlations.Comment: 21 pages, RevTeX

    Temperature Chaos, Rejuvenation and Memory in Migdal-Kadanoff Spin Glasses

    Get PDF
    We use simulations within the Migdal-Kadanoff real space renormalization approach to probe the scales relevant for rejuvenation and memory in spin glasses. One of the central questions concerns the role of temperature chaos. First we investigate scaling laws of equilibrium temperature chaos, finding super-exponential decay of correlations but no chaos for the total free energy. Then we perform out of equilibrium simulations that follow experimental protocols. We find that: (1) rejuvenation arises at a length scale smaller than the ``overlap length'' l(T,T'); (2) memory survives even if equilibration goes out to length scales much larger than l(T,T').Comment: 4 pages, 4 figures, added references, slightly changed content, modified Fig.

    Two-time autocorrelation function in phase-ordering kinetics from local scale-invariance

    Full text link
    The time-dependent scaling of the two-time autocorrelation function of spin systems without disorder undergoing phase-ordering kinetics is considered. Its form is shown to be determined by an extension of dynamical scaling to a local scale-invariance which turns out to be a new version of conformal invariance. The predicted autocorrelator is in agreement with Monte-Carlo data on the autocorrelation function of the 2D kinetic Ising model with Glauber dynamics quenched to a temperature below criticality.Comment: Latex2e, 7 pages with 2 figures, with epl macro, final from, to appear in EP

    Full Aging in Spin Glasses

    Full text link
    The discovery of memory effects in the magnetization decays of spin glasses in 1983 began a large effort to determine the exact nature of the decay. While qualitative arguments have suggested that the decay functions should scale as twt_{w}, the only time scale in the system, this type of scaling has not yet been observed. In this letter we report strong evidence for the scaling of the TRM magnetization decays as a function of twt_{w}. By varying the rate and the profile that the sample is cooled through its transition temperature to the measuring temperature, we find that the cooling plays a major role in determining scaling. As the effective cooling time decreases, ttw\frac {t}{t_{w}}scaling improves and for tceff<20st_{c}^{eff}<20s we find almost perfect ttw\frac{t}{t_{w}} scaling. We also find that subtraction of a stationary term from the magnetization decay has a small effect on the scaling but changes the form of the magnetization decay and improves overlap between curves produced with different twt_{w}.Comment: 4 pages, 3 figure
    corecore