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Introduetion iii 

Introduetion 

Coding theory studies ways to imprave the reliability of information transmission between 
electronic devices, such as computers. If two devices exchange digital information, part 
of the data can be corrupted due to imperfections of the channel, i.e. t ransmission errors 
can occur (the so-called noise). As a result, the information that is received differs from 
the information that is sent. lf one sends messages as such, channel errors would have a 
great impact on the quality of the received signal. In order to prevent a degradation of 
the received information, so-called redundancy is built into the signa!, i.e. t he transmitted 
sequence consists of more than the necessary information. Thus, even in the presence of 
noise, encoded messages are easily distinguishable from each other. A well-known example 
of messages with built-in redundancy is everyday language. The words of our language 
are only a small portion of all possible strings of letters. Consequently, a misprint in a 
(long) word results into a string that resembles the original word more than any other 
word we know. Hence, misprints and spelling flaws can be easily recognized and corrected. 
This example illustrates that, by using redundancy, encoded messages can be interpreted 
in the right way, even in the presence of occasional errors. Another example where the 
introduetion of redundancy impraves the quality of information transmission is the rep­
etition code. Here, one transmits every symbol of a message three times. At reception 
of the encoded message, one tries to reeover each message symbol by camparing its three 
transmissions and interpreting the symbol that occurs most of the time (i.e. at least twice) 
as the symbol sent. lf at most one in every three symbols is corrupted by channel errors, 
then this encoding procedure guarantees a perfect recovery of the original message. In gen­
era!, encoding schemes such as the ones described above are called error-correcting codes. 
Designing error-correcting codes that allow a high quality of data transmission with as few 
redundant symbols as possible is the main subject of coding theory. 
Error-correcting codes add redundancy to a signal, so as to allow a perfect recovery of 
information. Sometimes, however, it is not necessary to achieve perfect recovery of a 
signal. At first sight, this seems undesirable. But, there are many situations where a limited 
degradation of the signa! is acceptable. An important example is digital quantizat ion, a 
technique of approximating analog data by a fixed set of signals. This technique is applied 
in digital signa! processing of audio signals or video signals. Here, samples of analog data 
are represented by suitably chosen reference values. These val u es are chosen from a discrete 
set and can, therefore, be represented digitally. Another example is the communication 
of speech via a telephone network. Here, the signa! properties of the received speech and 
that of the original differ considerably. This degradation is, however, acceptable for voice 
communication. The examples described above have in common that arbitrary signals are 
approximated. This approximation process allows a shorter representation of data, at the 
expense of a limited loss of accuracy. In genera!, the approximation schemes described 
above are called (digital) quantizers. Obviously, one wants to design a digital quantizer in 
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such a way that the maximum (or average) distortion of analog signals is minimized. The 
quality of the approximation depends on the choice of the codeworcis and on the function 
that maps the data to these codewords. 
Covering codes can be viewed as quantizers for digital data. Each digital sequence is 
approximated by a codeword from the covering code that agrees with this sequence in 
as many positions as possible. This approximation process allows a shorter description of 
data, at the expense of a limited lossof accuracy. The maximum number of errors that one 
makes in this approximation process (the maximum distortion) is called the covering radius 
of the code. It should be noted that, in contrast with lossless data compression, where 
shorter descriptions of data are obtained by removing redundancy, the approximation of 
data using a covering code leads to lossy data compression, since it is in general not possible 
to reconstruct the data completely. 
As an illustration, we now describe a well-known problem from recreational mathematics, 
viz. the so-called football pool problem, and show its conneetion to covering codes. As­
sume n football matches, which have not been played yet. Each match has three possible 
outcomes (win, loose, draw), so in total there are 3n possible outcomes of these matches. 
Obviously, there are also 3n possible forecasts, i.e. lists containing the n predicted out­
comes. In many countries, it is a popular game to bet on the outcome of thesen matches. 
People may turn in any number of forecasts. Each forecast costs a fixed amount of money. 
After the matches have been played, part of the money raised in this way is returned to 
those participants who submitted a forecast with none or only a few errors. The football 
pool problem can now be described as follows: what is the minimum number of forecasts 
one has to submit in order to be sure that, no matter what the outcomes of the matches 
will be, one is guaranteed to have at least one forecast of these n matches that contains 
at most one error? In termsof coding theory: design a covering code with covering radius 
one and as few codeworcis as possible. 
Error-correcting codes and covering codes are designed for different purposes: the first one 
provides improved retiability, the second one provides a shorter description. Despite their 
different application area, there are many connections between these two types of codes. 
To illustrate these connections, we give an example of a code which can be used in either 
way. Suppose onè wants to transmit binary 4-tuples over a noisy channel. A channel error 
causes a 0 to be interpreted as a 1, and vice versa. If the 4-tuples are sent as such, then 
channel errors will greatly affect the reliability of the information. To allow correction of 
a single error, the 4-tuples are encoded to 7-tuples by adding 3 redundant symbols at the 
end, according to the following table: 

0: 
1: 
2: 
3: 

(0000,000), 4: 
(0001,111), 5: 
(0010,011), 6: 
(0011,100), 7: 

(0100,101), 8: 
(0101,010), 9: 
(0110,110), 10: 
(0111,001), 11: 

(1000,110), 12: 
(1001,001 ), 13: 
(1010,101), 14: 
(1011,010), 15: 

(1100,011), 
(1101 ,100), 
(1110,000), 
(1111,111). 

It is not hard to see that the 7-tuples of the table, which are called codewords, differ from 
each other in at least three positions. Therefore, a single transmission error can be cor­
rected. As an example, the message 1001 represents the number 9 and is therefore encoded 
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as the string 1001001. lf the 7-tuple 1101001 is received, then this string resembles the 
codeword 1001001 more than any other codeword, and is therefore decoded accordingly. 
The original message 1001 is obtained via a simple table-lookup (or by ignoring the Jast 
three bits). A property of the code is that, no matter which 7-tuple is received, there is 
always exactly one codeword that differs from this 7-tuple in at most one position. There­
fore, the code is also a covering code with covering radius one. Hence, by approximating 
a 7-tuple by a codeword- thereby introducing at most one error- one can describe this 
7-tuple by a 4-tuple. 
This example demonstrates that there are many relations between error-correcting codes 
and covering codes. Both types of codes involve a number of basic parameters. A code of 
length n is a collection of n-tuples. The cardinality of a code is its number of elements. A 
code bas minimum distance d, if any two distinct codeworcis differ in at least d positions. 
A code has covering radius r, if any arbitrary n-tuple differs from at least one codeword in 
at most r positions. So, the code from the previous example is a binary code of length n=7 
with cardinality M=16, minimum distance d=3, and covering radius r=l. It is clear that 
changing a codeword on less than d/2 positions results in a word that resembles the original 
codeword more than any other codeword; therefore, it can be interpreted correctly. Hence, 
the minimum distance d measures the error-correcting capability of the code. As already 
indicated, the covering radius r measures the maximum distartion that occurs when an 
arbitrary n-tuple is approximated by a suitable codeword. 
When designing codes, two aspects are important, viz. the quality of the code and its im­
plementation cost. Error-correcting codes add redundancy toa signal. This redundancy is 
minimal if the code has as many codewords as possible, given its Jength and minimum dis­
tance. Covering codes provide a shorter description of data. This description has minimal 
length if the code has as few codewords as possible, given its length and covering radius. 
Therefore, the information rate, i.e. the extent to which data is expanded, resp. reduced, 
determines the quality of both types of codes. For error-correcting codes the information 
rate should be as large as possible, for covering codes it should be as small as possible. 
Encoding/ decading are usually to be performed by small electronk devices wi th I i mi ted 
memory size. Therefore, the code's implementation cost- both in memory terms and in 
termsof encodingfdecoding efficiency- is of practical importance. These two aspects, viz. 
quality and implementation's efficiency, can be conflicting. Many record-breaking codes 
have been found using beuristic search algorithms such as simulated annealing. Although 
these codes have a good quality, their structure is usually poor or absent, whereas struc­
ture is essential for an efficient implementation. In genera!, a systematic and constructive 
approach to designing codes offers the perspective of achieving both aims at the same time, 
since it usually results in codes with a lot of (mathematica!) structure. 
In this thesis we discuss covering codes. For these codes, we present bounds as well as 
constructions. Usually, we assume that the design parameters of a covering code, i.e. 
its length n and its covering radius r, are fixed. The bounds we give are then lower 
bounds on the cardinality K(n, r) of any covering code with Jength n and covering radius 
r . Equivalently, we could have studied the minimum covering radius r that can be attained 
by any covering code with fixed Jength n and fixed information rate kjn. Where possible, 
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we have tried to give connections between covering codes, error-correcting codes, and other 
structures from discrete mathematics. We foliowed two approaches. In the first approach, 
we took bounds or constructions that are known for error-correcting codes as a starting 
point for studying similar bounds and constructions for covering codes. In the second 
approach, we foliowed the other direction of research, mainly to show that many results 
from the literature have analogues in the theory of error-correcting codes. Our approach 
shows that there are intricate relations between covering codes and error-correcting codes. 

Overview 

In Chapter 1 we reviewsome notions from coding theory that wil! be used throughout the 
rest of this thesis. Moreover, we show how many well-known results from coding theory 
can be obtained in a uniform way. The upper bounds on the covering radius of a code 
obtained by Tietäväinen and Delsarte follow as a special case. 
In Chapter 2 we discuss a number of lower bounds on the size of binary covering codes 
with a prescribed length and covering radius. It is shown that most of the lower bounds 
for covering codes can be described as direct analogues of the well-known Johnson bound 
for error-correcting codes. The most important result of the chapter is an improverneut of 
the Van Wee bound for binary linear codes. Many other results in this chapter highlight 
relations between bounds for covering codes and bounds for error-correcting codes. Some 
of the result of this chapter can also be found in [80]. 
In Chapter 3 we present lower bounds on linear covering codes by studying their dual 
structure. We show how the parameters of a linear covering code impose restrictions on the 
form of the dual code. Inparticular, we obtain restrictions on both the weight distribution 
and the intersection of .different words in the dual code. Using these restrictions, and 
coding theory, we show that many sparse linear covering codes simply cannot exist. In 
particular, we prove a conjecture by Brualdi, Pless, and Wilson. Part of the results of this 
chapter can also be found in [79] . 
In Chapter 4 we consider constructions for sparse covering codes. Starting point is a 
generalization of the direct sum construction that has proved to produce good results 
for error-correcting codes. We show that this generalization can also be used to obtain 
good covering codes, i.e. covering codes with relatively few codewords. Although part 
of the results are not new, their proof and description mostly is. The most important 
new result of this chapter is a simple construction of an infinite sequence of covering 
codes with covering radius two, minimum distance four, and density approaching 1, thus 
improving the previously best known construction, which has density 9/8. Another result 
is a generalization of the concept of normal code, which allows many simplified proofs of 
properties of these codes. 



Chapter 1 

Coding Theory - A Quick Review 

1.1 Introduetion 

In this chapter we quickly review some notions from coding theory that will be used 
throughout the rest of this thesis. The chapter is not intended to be an introduetion to 
coding theory: we merely give definitions and leave out the underlying motivation for the 
different concepts. For these, we refer to one of the many good textbooks on coding theory, 
see e.g. [58, 64). The main concepts are treated in a fairly concise way. Yet, we have taken 
care to make the chapter mostly self-contained. The chapter is organized as follows. In 
Section 1.2 we introduce the basic concepts that play a role in the study of codes. This 
section provides the background needed in order to be able to understand the remaining 
chapters. In the rest of the chapter we quickly discuss some of the more ad vaneed topics in 
coding theory. In Section 1.3 we give some properties of Krawtchouk polynomials. These 
polynomials play an essential role in Section 1.4, which introduces weight enumerators 
and the duality theorem, and in Section 1.5, which considers relations between the dual 
distance, the weights in a code, and the covering radius. Almost all results obtained in 
this chapter are well-known. The main contribution of Section 1.5 is a uniform description 
of these results. Except for the first section, we restriet ourselves to binary codes. 

1.2 Basic Concepts 

In this thesis we mainly consider codes over the binary field lF 2 = { 0, 1}. In this section 
we give definitions over lF q, the field with q elements. We adopt the notations of [58, 64]. 
The set of all n-tuples over the field lF q forms a vector space denoted by JF';. The Hamming 
distance d(x,y) between two words x,y E JF'; is defined by d(x,y) :=I{ i I x; i= y;}l. The 
weight wt(x) of a word x E JF'; is defined by wt(x) := d(x, 0). The support of a word 
x E JF~ is defined by supp(x) := {i I X; i= 0}. The support of a set of words is the union 
of the supports of its elements. 
A q-ary code C oflength nis a nonempty subset of IF~ . lf C has cardinality M, Cis called 
an (n, M) code. A linear code of length n is a linear subspace of IF';. lf C is a subspace 
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of dimension k, then C is called an [n, k] code. lts translates are called cosets of the linear 
code. The veetors of minimum weight in such a coset are called coset leaders. If C is an 
[n, k] code, then its dual code Cl- is the [n, n- k] code defined by 

cj_ := {y E IF'; I (x, y) = 0 for all x E C}, 

where (x, y) denotes the standard inner product of x and y. 
A generator matrix G for an [n, k] code C is a k x n matrix for which the rows are a basis 
of C. A generator matrix H for its dual code Cl- is called a parity check matrix of C. Thus 
codewords . of C are characterized by 

x E C <=> xHT = 0. 

If C is a q-ary [n, k] code with parity check matrix H , then for every word x E JF"; the 
vector xHT is called the syndrome of x. 
The minimum distance d of a code C is the minimum value of d(x, y) over all pairs of 
different codewords x, y E C. The covering radius r of a code C is the maximum value of 
d(x,C) over all words x E IF';. Here d(x,C) is defined by d(x,C) := min{d(x,c) I c E C} . 
For linear codes, the covering radius is the highest weight of any coset leader of the code. 
Let C be a code of length n with covering radius r . We say that a word x E IF'; is covered 
by the codeword c E C, if d(x, c) :::; r . For linear codes, we say that a syndrome is covered, 
if any word with this syndrome is covered. The sphere B.(x) of radius s around x E IF'; is 
defined by B.(x) := {y E IF'; I d(x, y) :::; s }. The cardinality of this sphere is denoted by 
Vq(n, s). (If q=2, we simply write V(n, s).) From the definition of the covering radius it 
is immediately clear that a code C in IF'; has covering radius r , if for every word x E IF'; 
there exists at least one codeword c E C such that x E Br(c). 
Sometimes, it is useful to consider the operations extending, puncturing, and shortening. 
We wil! only define these operations for binary codes, so q=2. For any code C of length n, 
its extended code Cis defined by 

n 

C :={(eh . . . , Cn, 'L c;) I (cl, . . . , Cn) E C} . 
i = I 

lts punctured code C[i] is the code one obtains by deleting the ith coordinate from every 
codeword of C. lts shortened code is the code one obtains by considering all codewords 
that end on the same position and subsequently deleting this last position. 

When we refer to the dual distance, dual covering radius, etc., of a linear code C, we 
consider the respective parameters of its dual code Cl-. When we have some additional 
information on the code, we can add this to the parameter description of the code. For 
example, an [n, k, d]r code denotes an [n, k] code with minimum distance d and covering 
radius r, an [n, k; W] code denotes an [n, k] code for which all codeworcis have weights 
in the set W, an (n, M)r code denotes an (n, M) code with covering radius r, and so 
on. Sametimes we use the function d[n, kJ, which denotes the largest achievable minimum 
distance for any [n, k] code. In the rest of this chapter , as in most of this thesis, we restriet 
ourselves to binary codes. For these codes, a table of bounds for d[n, k] is provided in [7]. 
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1.3 Krawtchouk polynomials 

In this section we introduce a sequence of orthogonal polynomials, the so-called Krawtchouk 
polynomials. These polynomials play an important role in several parts of coding theory. 
We mention several properties of these polynomials that will be used in the rest of this 
chapter. For details we refer to [58, Sectien 1.2]. 

For k = 0, 1, 2, . .. the Krawtchouk polynomial Kk(x; n) is defined by 

Kk(x; n) := t( -1)i (~) (nk = ~), where x E JR. 
J=O J J 

(1.1) 

If the parameternis clear from context, then we simply write Kk(x) instead of Kk(x; n). 
Notice that Kk(n- x;n) = (-1)kJ<k(x;n). 

From Equation (1.1) it follows directly that 

L (-l)(x,y) = Kk(i;n) ifx E JF~ has weight i. (1.2) 
y:wt(y)=k 

Equation (1.2) proves to be useful in the rest of this chapter. We will also need eertaio 
relations between the Krawtchouk polynomials and some information on the locations of 
the zeros of these polynomials. 

Krawtchouk polynomials satisfy certain orthogonality relations which prove to be useful 
in coding theory. 
It is clear from the definition that Kk(x; n) is a polynomial of degree k in variabie x. The 
Krawtchouk polynomials satisfy the following relation: 

~ (7)I<k(i)Kt(i) = ókt(~)2n. (1.3) 

It follows, that the polynomials { Kk(x; n) };:=0 form an orthogonal basis of the vector space 
of all polynomials in JR[x] of degree at most n with inner product 

(J(x),g(x))n := ~ (7)J(i)g(i). (1.4) 

In the rest of the chapter we will make extensive use of this orthogonality relation. For 
later use we mention that a simple calculation shows that 

((n- x)f(x),g(x))n = n(J(x),g(x))n-l' (1.5) 

Apart from orthogonality relation (1.3), the Krawtchouk polynomials also satisfy another 
kind of orthogonality relation, viz. 

n 

L J(k(i)K;(l) = Ókt2n. (1.6) 
i= O 
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Krawtchouk polynomials have real zeros which satisfy an interlacing property. 
The polynomial Kk(x; n) has k distinct zeros in the interval (0, n). These zeros are sym­
metrical with respect to ~n, since Kk(n- x;n) = (-1)kKk(x;n). If x1 < ··· < Xk are the 
zeros of Kk(x; n) and if y1 < · · · < Yk-i are the zeros of Kk-i (x; n), then the zeros have 
the following interlacing property: 

0 < X1 < Y1 < x2 < · · · < Xk-1 < Yk-1 < Xk < n. (1.7) 

In particular we find that if x~1~ is the smallest zero of Kk(x; n), then 

(i) (!) (i) 
xk,n-1 < xk,n < xk-i,n-1· (1.8) 

(All these results can be easily proved by induction on k + n, using Equation (1.1) and the 
identity Kk(x; n) = Kk(x; n- 1) + Kk-i (x; n- 1), which is implied by this equation.) 
In general the exact location of the zerosof J(k(x; n) is not known, but asymptotically it is 

known [64, p. 563] that if 0 < r < ~~ n--+ oo, and k/n--+ r, then x~~~/n--+ ~- Jr(1- r). 

The Krawtchouk polynomials of degree at most two are 

K0 (x; n) = 1 without zeros; 
K 1 (x; n) = n- 2x with zero ~n; 

K2(x; n) = 2x2 
- 2nx + (~) with zeros ~(n ± y'n) . 

1.4 Weight and Distance Enumerators 

When studying the properties of a code, it is often necessary to have some more detailed 
information on the weights of the codewords and the distauces in the code. When studying 
the covering radius of a code, we need to have this information for the translates of the 
code. For these purposes we introduce the weight and distance enumerator of a code. 

Let C be a code of length n and let A; be the number of codeworcis of weight i. The sequence 
{A;}~0 is called the weight distribution of code C. The polynomial A(z) := l:A; zi is 
called the weight enumerator of code C. The weight enumerator A(z) of a linear code C and 
the weight enumerator B(z) of its dual code Cj_ are related via the so-called MacWilliams 
identities 

1 ( 1 - z) 
B(z ) = jCj(l + zt A 1 + z . (1.9) 

Fora proof of this statement we refer to Theorem 1.2. 
Gomparing the coefficients of z0 , z 1

, z2 , • • . on both si des of this equation, we obtain an ex­
plicit relation between the weight enumerator {A;}f=o of code C and the sequence {BJ}J=o• 
viz. 

(1.10) 
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Here the numbers { Ki (i; n)} j=o are the Krawtchouk coefficients defined by Equation ( 1.1). 

The sequence {Bi}}=o defined by Equation (1.10) is called the MacWilliams transfarm or 
dual of {A;}~0 . The MacWilliams transfarm of the weight distribution {A;}~0 only has 
an interpretation if C is a linear code. lf C is not linear, we can still consider this sequence, 
though. First, however, we define the weight distribution of translates of code C and the 
distance distribution of this code. 

For all x E JF~ let A;(x) be the number of codewords at distance i from x. lt follows, that 
the code x+ C has weight distribution {A;(x)}~0 . We denote the corresponding weight 
enumerator by Ax(z). 
The distance enumerator Ac(z) of code C is defined by 

n . 1 
Ac(z) := L::A;(C)z' = jCj L Ax(z) . 

•=0 xEC 
(1.11) 

lf Ax(z) does not depend on the actual choice of x E C, then code C is called distance 
invariant. Linear codes are an example of distance invariant codes. Notice that if C is a 
distance invariant code and 0 E C, then the weight and distance enumerator of C are the 
same. 

The MacWilliams transfarm of Ax(z) is denoted by Bx(z) =I: Bj(x)zi; the MacWilliams 
transfarm of Ac(z) by Bc(z). From the definition of the distance enumerator it follows 
directly that 

n . 1 
Bc(z) := L::B;(C)z' = jCj L Bx(z). 

•=0 xEC 
(1.12) 

All coefficients of the polynomial Bc(z ) are nonnegative. 

Theorem 1.1 Let C be a code of length n. Let A( z) be the distance enumerator of C with 
dual distance enumerator B(z). Let Ax(z ) be the weight enumerator of x+ C with dual 
enumerator Bx(z) . Then 

1. Bj(x) = ICI-1 I: (-1)(x,y) I: (-1)(c,y), 
y:wt(y)=j cEC 

2. Bi= ICI-2 I: . (I: (-1)(c,y))
2 

~ 0. 
y:wt(y)=J cEC 

Proof: 
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1. From Equation (1.2) and the definition of Bi(x) we infer that 

" L A;(x)Kj(i; n) 
i=O 

L Kj(d(x, c); n) 
ceC 
L L (-1)(c-x,y) 
ceC y :wt(y)=j 

L ( -1)(-x,y) L ( -1)(c,y). 
y:wt(y)=j ceC 

2. From Property 1 of this theorem and the definition of Bi we infer that 

ICI2 Bi = !Cl L Bj(x) 
xeC 

L . (L ( -1)(c,y)) 2 2 0. 
y:wt(y)=J ceC 

If C is a linear code, then the sequence {Bi} J=o has a natura! interpretation. 

0 

Theorem 1.2 Let C be a linear code of length n with weight enumerator A(z) and let 
B(z) be the MacWilliams transfarm of A(z). Then B(z) is the weight enumerator of the 
dual code cJ.. 

Proof: Let y E JF";. be a vector of weight j and consider the summation 

L ( -l)(c,y). 

ceC 

If y E CJ., then the inner product (c, y) always assumes the value 0. If y tf. CJ. , then the 
inner product (c,y) assumes the values 0 and 1 equally often in this summation, since Cis 
a linear code. It follows, that the summation has value IC! if y E cJ. and value 0 if y tf. cJ.. 
Using Property 2 of Theorem 1.1, we infer that Bi is equal to the number of codeworcis of 
weight j in cJ.. 0 

Let C be a code of length n with dual distance distribution {Bi}}=o and let N(C) := {1 :::; 
j :::; n I Bi =/= 0} . The smallest integer in this set is called the dual distance d' of code C. 
Notice, that if C is a linear code, then its dual distance is the minimum distance of CJ.. 
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Sometimes it is useful to consider, instead of the set N(C), the annihilator polynomial of 
code C defined by 

2n ( x) a(x) = -ICI TI 1 - -:- . 
jEN(C) J 

(1.13) 

The next lemma, a direct consequence of Theorem 1.1, proves to be useful in the rest of 
the chapter. 

Lemma 1.3 Let C be a code of length n . Then 

1. Bi = 0 *> I: ( -1)(c, y) = 0 for all y E JF'; with weight j, 
ceC 

2. Bi= 0 *> Bi(x) = 0 for all x E JF'; . 0 

The dual distance of a code is closely related to that of its punctured and shortened codes. 
From Property 1 of Lemma 1.3 it follows directly that puncturing a code with dual distance 
d' does not decrease the dual distance. The following lemma relates the dual distance of a 
code with that of its shortened codes. 

Lemma 1.4 Let C be an ( n, M, d) code with dual distance d' > 1. Let C0 := { c I ( c, 0) E 
C} and let C1 := { c I (c, 1) E C} . Then C0 and C1 have parameters (n- 1, M/2, d) and 
dual distance (at least) d'- 1. 

Proof: From Property 1 of Lemma 1.3 we infer that for every vector (x, Xn) E JF'; of 
weight 0 < wt((x,xn)) < d' we have 

L (-1)((c,c") , (x,xn)) = L (-1)(c,x) + (-1)"'n L (-1)(c,x) = 0. (1.14) 
(c,cn)EC ceCo ceC. 

Substitution of x = 0 and Xn = 1 in Equation (1.14) yields !Col = ICd = M/2. If 
0 < wt(x) < d'- 1, then Equation (1.14) holds both for Xn = 0 and for Xn = 1. Hence 

L ( -1)(c,x) = L ( -1)(c,x) = 0 if 0 < wt(x) < d'- 1. 
cECo cEC1 

Using Property 1 of Lemma 1.3 once again, we infer that C0 and C1 have dual distance at 
least d' - 1. 0 
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1.5 More on the Code Parameters 

In this section we derive eertaio relations between the parameters of a code. We consider 
relations between the dual distance, the weights in the code, and the covering radius. Most 
results have been originally obtained by Delsarte [25] and can also be found in [64]. We 
show that all results fellow from one simple lemma (Lemma 1.5), thus offering a uniform 
approach. 

The next lemma shows that the weight distribution of a code satisfies eertaio linear equa­
tions. 

Lemma 1.5 Let C be a code of length n . Let {J(x) := 'L {JiKi(x; n) be a polynomial in 
JR[x] for which {Ji = 0 if jE N(C) . Then 

n 

L A;(x){J(i) = ICI.Bo for all x E JF~. 
i=O 

Proof: Let x E JF~. From Lemma 1.3 we infer that Bi(x) = 0 for all 0 "I j rf. N(C). 
Moreover, by definition of Bi(x) we have B0 (x) = 1. Therefore 

n 

L A;(x),B(i) = L A;(x) L ,Bil<i(i; n) 
i=O 

j 

IC! 2: .BjBj(x) = ICI.Bo­
j 

0 

It is clear from Lemma 1.5 that the weight distribution of a code C satisfies (n + 1) - s' 
linearly independent equations, where s' := IN(C)I. If the number of unknowns in the 
weight distribution is at most d', then this weight distribution can be uniquely determined 
from the weights in the code. 

Theorem 1.6 Let C be a code of length n with dual distance d' . Let x E ~- If the set 
W := {i I A;(x) "I 0} has size s :S d', then the weight distribution {A;(x)}:';"0 is uniquely 
determined by the set W. 

Proof: Let W = {w1 , ... ,w.} and assume that s :S d'. Let 1 :S j :Ss and let Lj(x) be 
the polynomial of minimal degree that is 1 on wi and 0 on w; (i "Ij), i.e. 

Li(x) = g (;i~ :;J =~>-lil I<;(x; n). 
i f.j 
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This so-called Lagrange polynomial has degree s -1 < d' . Herree we can apply Lemma 1.5 
and find that 

n 

Aw;(x) = L:A;(x)Li(i) = À~'ICI. 
i=O 

0 

From the proof of Theorem 1.6 it is immediately clear, that if s0 out of the s nonzero 
coefficients of the weight distribution are known and if s - s0 ~ d', then we can still 
determine the weight distri bution of the code. Therefore Theorem 1.6 remains valid, if we 
redefine parameter s to be the number of unknowns in the weight distribution. 

Corollary 1.7 Let C be a code of length n with dual distance d' and distance distribution 
{A;} f:0 . If the set W of nonzero distances in the code has si ze s ~ d', then code C is 
distance invariant and the distance distribution is uniquely determined by the set W. 

Proof: Let s ~ d' . Let c be a codeword of C and let Wc := {i I A;(c) # 0} . By 
definition of the distance enumerator we have Wc Ç W U {0}. Since A0 (c) = 1, the 
weight distribution {A;(c)}i=o has at most d' unknowns. Using Theorem 1.6, we find that 
the weight enumerator Ac ( z) is uniquely determined by the set W. Since Ac ( z) does not 
depend on the actual choice of c E C, code C is distance invariant. 0 

Sometimes the code has even more combinatorial structure. 

Definition 1.8 LetS be a set of v elements and let B be a collection of subsets of S, each 
with cardinality k. The pair (S, B) is called a i-(v, k, À) design, or i-design, if for every 
T C S with cardinality ITI =i there are exactly À elements B of B such that T C B. 

Theorem 1.9 Let C be a code of length n with dual distance d'. Let x E JF~. If the set 
W := {i > 0 I A;(x) # 0} has size s = d' - i, where i > 0, then the codewordsof each 
weight in x+ C form a i-design, provided that this weight is at least i . The parameters of 
this design are uniquely determined by the set W . 

Proof: Let i = d' - s > 0. Let T be any set of i different coordinates of the code. Let 
Cr · be the code obtained from x + C by consiclering the codewords that have on es on the 
positions of T and subsequently deleting these positions. Since code Cr can be obtained 
from x + C by shortening it i times, we infer from Lemma 1.4 that Cr has cardinality 
ICrl = 2-1 ICI and dual distance at least d' -i. Now we consider the weight distribution 
{a;};',;~ of Cr. By definition of Cr we have {i+ i I a; # 0} C W, hence Cr has at most 
s = d' - i weights. From Theorem 1.6 we obtain that the weight distribution of Cr is 
uniquely determined by the set W . It follows that a; , the number of codewordsof weight 
i +i in x+ C that have ones on the positions of T, does not depend on the actual choice 
of T, i.e. the codewords of weight i+ i in x + C form a i-(n, i+ i, a;) design. 0 
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Delsarte [25, Theorem 2.2] proved that if a code bas dual distance d' and if it bas s nonzero 
distances, then s 2: l(d'- 1)/2J . This bound was referred to as the dual MacWilliams 
inequality in [24, Equation (5.37)] . We wil! need a slightly stronger result. 

Theorem 1.10 Let C be a code of length n with dual distance d'. Let x E JF'; and let 
W :={i I A;(x) f; 0}. Then IWI 2: l(d' -1)/2J + 1. 

Proof: See the appendix at the end of this chapter. 0 

Lemma 1.5 shows that the weight distribution of a code satisfies certain linear equations 
with coefficients induced by some polynomial {3(x). By a proper choice of this polyno­
mial one obtains an upper bound on the covering radius of the code, as was shown by 
Tietäväinen [81]. We will prove a small extension of his result. 

Theorem 1.11 Let C be a code of length n. Let {3(x) := L, {3jKj(x; n) be a nonzero 
polynomial in JR[x] for which {3j = 0 if jE N(C). Suppose {3(x) :::; 0 for allintegersin the 
interval (B, n]. Then C has covering radius at most B in each of the following two cases: 

1. f3o > 0, 

2. {30 = 0 and {3(x) has at most l(d' -1)/2J integral zerosin the interval (B,n]. 

If C is a self-complementary code (i .e. C is invariant under the translation x --+ x+ 1), 
then the bound on the covering radius remains valid if we replace the constraints on the 
interval (B, n] by constraints on the smaller interval (B, n- B). 

Pro of: Let x E JF';. From Lemma 1.5 we infer that 

" L A;(x)f3( i) = 1Cif3o. (1.15) 
i= O 

1. If {30 > 0, then it follows from Equation (1.15) that not all the numbers A;(x) with 
i :::; B can be zero, hence d(x, C) :::; B. Therefore code C bas covering radius at most B. 

2. Let {30 = 0 and suppose that d(x,C) > B. It follows from Equation (1.15) that 
A;(x){J(i) = 0 for all i > B, i.e. {3(x) is zero on the set W := {i I A;(x) f; 0} . By 
Lemma 1.10 this set has cardinality IWI 2: l(d' -1)/2J + 1 and hence {3 (x) has more 
than l(d' - 1)/2J integral zeros on the interval (B , n]. This proves the statement. 

If Cis a self-complementary code, then A;(x) = A"_;( x). Therefore the result remains valid 
if we replace the constraints on the interval (B, nJ by constraints on the smaller interval 
(B ,n - B) = (B,nJ n [O ,n- B). o 

Remark 1.12 In [81] the same result was proved, but only for polynomials {3(x) of degree 
at most d' - 1 for which {30 > 0. 
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Any polynomial (J(x) that satisfies the conditions of Theorem 1.11 yields an upper bound 
on the covering radius of a code C as a function of the set N(C). 

Example 1.13 Let C be a self-complementary code of length n with dual distance d' ~ 3. 
We want to find an upper bound on the covering radius of this code by consiclering the 
polynomial (J(x) = (30 K0 (x) + (31K1 (x)+ K 2(x) = (30 + (31 (n- 2x) + (2x2 - 2nx + !n(n -1)). 
Choose (30 ~ 0 and (31 in such a way tbat (3(8) = (J(n- 8) = 0, wbere 8 < !n. Since 
(J(x) < 0 on tbe interval (8,n- 8), tbe assumptions of Theorem 1.11 are satisfied and 
bence 8 is an up per bound on tbe covering radius of C. For eacb (30 in tbe range [0, !nJ we 
find that (31 = 0 and 8(n- 8) = !f3o + ~n(n- 1), i.e. 81,2 = Hn ± Jn- 2/30). Clearly, 
one obtains tbe best bound if (30 = 0, i.e. if (J(x) = K2 (x). It follows, tbat C bas covering 
radius r(C) ~ !(n- vfn) . 

Remark 1.14 This result was originally proved by Hellesetb et al. [36] and was referred 
to as the Norse bound in [17]. In fact, the proof of [36, Tbeorem 3] already uses tbe 
polynomial (J(x) = J(2(x; n) implicitly. The bound in the above example is tight, since the 
first order Reed-Muller code 'R(1, m) of length n = 2m, m even, has dual distance d' = 4 
and covering radius r = t(n- ,fiï). If x bas maximal distance to tbis Reed-Muller code, 
then the coset x+ 'R(1, m) only contains wordsof weights w1•2 = t(n ± ,fiï). 

Theorem 1.11 yields an upper bound on the covering radius of a code C as a function of 
the set N(C). The best upper bounds known1 on the covering radius were obtained by 
Tietäväinen [81] and Delsarte [24] and depend on the dual distance d' = min N(C) , resp. 
on the number s' := IN(C)I. First we give Tietäväinen's bound. 

Theorem 1.15 [81] Let C be a code of length n with dual distance d' > 1. Let x(k, n) be 
the smallest zero of the Krawtchouk polynomial Kk(x; n). Then C has covering radius r 
with 

<{x(t,n) 
r_ x(t,n-1) 

if d' = 2t, 
if d' = 2t + 1. 

Proof: Our proof is based upon an application of Theorem 1.11. For any polynomial 
(J(x) we denote its Krawtchouk expansion by (J(x) = L: (JJ(;(x; n). In order to apply 
Tbeorem 1.11, we need to know (30 . Reeall from Section 1.3 that the Krawtcbouk poly­
nomials { J(k(x; n) }k=O form an orthogonal basis of the vector space of all polynomials in 
JR[x] of degree at most n with inner product (f(x),g(x)}n. Using the detailed ortbogonality 
relation (1.3), we find that (,B(x), l}n = (302n. 

1. Let a 1 be the smallest zero of K 1(x) := K 1(x ; n). Let (3(x) := -Kl(x)j(x - a 1). 

Since K1(x) has degree tand K1(x)j(x- a 1) is a polynomial of degree t- 1, we find 
tb at 

f3o2n = ((3(x), l}n = -(I<t(x), I<t(x)/(x- ai)}n = 0. 

1 Very recently an asymptotically superior bound was reported, see [61]. 
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Notice that (J(x) ::; 0 on (a1, n] and has t - 1 distinct roots on this interval. lt 
follows, that if C has dual distance d' 2: 2t, then (J(x) satisfies the assumptions of 
Theorem 1.11 with () = a 1. Therefore code C has covering radius r::; a 1 = x(t, n). 

2. Let a 1 be the smallest zero of K 1(x) := K 1(x; n-1). Let (J(x) = (x-n)K?(x)j(x-at). 
Since K 1(x) has degree tand K 1(x)j(x- at) is a polynomial of degree t- 1, we find 
that 

/3o2n = (/3(x), l)n = ((x- n)Kt(x),Kt(x)j(x- a1))n 

= -n(Kt(x;n -l),Kt(x;n -1)/(x- a1))n-l = 0. 

Here we used Equation (1.5). Notice that (J(x) ::; 0 on (a1, n] and has t distinct roots 
on this interval. lt follows, that if C has d u al distance d' 2: 2t + 1, then (3( x) satisfies 
the assumptions of Theorem 1.11 with B = a 1. Therefore code C has covering radius 
r::;a1 =x(t,n-1). 0 

Notice that the upper bounds on the covering radius can only be attained if all the zeros of 
the Krawtchouk polynomial K1(x) in the proof are integers. When applying Theorem 1.15, 
the exact value of x(k, n) is usually not known. In that case one can use the estimate for 
x(k, n) given in Section 1.3. In [81] Tietäväinen separately considered upper bounds on 
the covering radius of self-complementary codes. Those bounds follow from Theorem 1.15 
as wel!. 

Sometimes it is useful to describe the properties of a polynomial via a related polynomial. 

Lemma 1.16 Let (J(x) = f: {J;l(;(x) and let -y(x) = f: -y;l(;(x). Then 'Yi = (J(i) for all i 
i=O i=O 

iff (Ji = 2-n-y(j) for all j. 

Proof: Suppose -y(x) = f: (J(i)K;(x). Then -y(x) = 'Ê f3k f: Kk(i)K;(x). From Equa-
i=O k =O i=O 

tion (1.6) we infer that 
n n n 

-y(j) = L f3k L Kk(i)K;(j) = L f3k8kj2n = /3j2n for all j, 0 ::; j ::; n. 
k=O i=O k=O 

The converse statement follows from the fact that -y(x) is uniquely determined by the 
function values -y(O), ... , -y(n). 0 

The polynomial -y(x) = f: (J(i)K;(x) is called the Fourier transform of (J(x). 
i=O 

Now we are ready to prove Delsarte's bound. 

Theorem 1.17 [24] Let C be a code of length n. Then C has covering radius at most 
s' := IN(C)I. Moreover, for every x E IF; the weight enumerator {A;(x)}i=o is uniquely 
determined by the first s' coefficients of this sequence. 
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Proof: Our proof is hased upon an application of Theorem 1.11 and Lemma 1.5. Let 
a(x) he the annihilator polynomial of code C. Reeall from (1.13) that this polynomial is 
zero on N(C) and has degree s'. 
Let /3(x) = L: /3;K;(x; n) and let Î(x) he the Fourier transfarm of /3(x). 
If we choose Î(x) = a(x), then Î(x) has degree s', Î(j) = 0 for all j E N(C), and 
Î(O) = 2n1Cj-1

. By Lemma 1.16 we now have /30 = ICI-1 > 0, /3i = 0 for all j E N(C), and 
/3(s' + 1) = ... = /3(n) = 0. It follows, that /3(x) satisfies the conditions of Theorem 1.11 
with 8 = s'. Therefore code C has covering radius at most s'. By Lemma 1.5 we have 

•' L ÎjAj(x) = 1. 
j=O 

If we choose Î(x) = xi a(x) = LÎ)i)Ki(x) (i> 0), then we find, similarly, that /3i = 0 for 
all j E N(C) and /30 = 2-nÎ(O) = 0. Now Lemma 1.5 yields 

s'+i 

L Î)i) Aj(x) = 0 if i > 0. 
j=O 

It fol!ows that the weight enumerator of {A;(x)}i:,0 is uniquely determined hy the first s' 
coefficients of this sequence. 0 

Lemma 1.5 showed that the weight distrihution of a code satisfies certain linear equations. 
Below we wi!l show that, in fact, these equations are characterized hy this lemma. First, 
however, we give a slightly stronger result, which will prove to be useful in Chapter 2, 
page 34. 

Definition 1.18 Let f : IF~ --+ IR. The Hadamard transfarm of f is the function F 
defined by 

F(y) := L( -1)(x,y) f(x) for all y E JF2. 
x 

Theorem 1.19 Let C be a code of length n with annihilator polynomial a(x) and let 
n 

>.(x) := L: >.;!(;(x; n) be a polynomial in JR[x]. Let f(x) := L: À;A;(x) for all x E fF2 and 

let F be the Hadamard transfarm of f. Then 

1. F(y) = >.(wt(y)) L: (-1)(c,y), 
cEC 

i=O 

2. If f(x) 2: /3 for all x E JF~, then IF(y)l s; ICI>.(O)- /3 · 2n for all y =1- 0, 

3. If f(x) = /3 for all x E JF~, then a(x) I >.(x) and /3 = 2-niCI>.(O). 
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Proof: 

1. Let F; be the Hadamard transform of the function x-+ A;(x). From Equation (1.2) 
we infer that 

F;(y) = L( -1)(x,y) A;(x) 
x 

L: L: 
( _ 1)(c- z,y) 

ceC z:wt(z)=i 

L: 
(-1)(z,y) 'L(-1)(c,y) 

z:wt(z)=i ceC 

= K;(wt(y);n) 'L(-1)(c,y)_ 

ceC 

The result now follows from the observation that F(y) = I: À;F;(y). 

2. Suppose f(x) 2: {3 for all x E IF';. Observe that 

L ( -1)(x,y) = { 20n 
XEIF2 

if y = 0, 
otherwise. 

It follows, that for all nonzero veetors y in JF~ we have 

IF(y)l =I 'L(-1)(x,y)(f(x)- !3)1:::; L lf(x)- !31 = F(O)- {3 · 2n. (1.16) 
x x 

By Property 1 of this theorem we have F(O) = ICI.>.(O) = ICI f: À; (n), hence the 
i=O ' 

result follows. 

3. Suppose f(x) = {3 for all x E JF~. From (1.16) we infer that {3 = 2-niCI.>.(O) and that 
F(y) = 0 for all y =1- 0. By Property 1 of this theorem this implies, that if y E IF'; 
has weight j > 0 and if 

L:(- 1)(c,y) =1- 0, 

ceC 
then .>.(j) = 0. From Property 2 of Lemma 1.3 it now follows, that a(x) I .>.(x). 0 

By stating the properties of the polynomial >.(x) in termsof those of its Fourier transform, 
it can easily be verified that Property 3 of Theorem 1.19 is the converse of Theorem 1.5. 
In particular, we obtain the following corollary. 

Corollary 1.20 Let C be a code of length n. let >.(x) :=I: À;K;(x; n) be a polynomial in 
IR[x] and let B E JR. Then 

n 

L À;A;(x) = B for all x E JF~ (1.17) 
i= O 

if and only if a(x) I .>.(x) and B = 2- niCI.>.(O). 
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Remark 1.21 Codes that satisfy Equation (1.17) with 0 =I= 0 are called perfect weighted 
coverings by some authors, see e.g. [18]. This class of codes contains the perfect codes, 
nearly perfect codes, and uniformly packed codes. It can easily be shown that Lloyd's 
theorem for perfect codes [58, Theorem 7.1.8] and generalizations of this theorem [58, 
Theorem 7.3.5] all follow from Corollary 1.20, using Theorem 1.17. 

1.6 Appendix A 

Proof of Theorem 1.10: 
Let t := l ( d' - 1) /2 J. We will show that the only polynomial in IR[ x] of degree at most t 
that is zero on W is the zero polynomial, thus proving that !W! ~ t + 1. 
Let a 0 , ..• , Ot E lR and suppose that 

t 

:La;K;(x) = 0 on W. (1.18) 
i=O 

To prove the theorem we will show that a 0 = · · · = Ot = 0. Let 0 ~ j :S t. From (1.18) we 
infer that 

n t t n 

L Kj(w)Aw(x) :La;K;(w) =La; L Aw(x)K;(w)Kj(w) = 0. (1.19) 
w=O i=O i=O w=O 

We now consider the last summation in more detail. For all i, 0 ~ i ~ t , let 

n 

S;j = L Aw(x)K;(w)Kj(w) . (1.20) 
w=O 

The polynomial (J(x) := K;(x)Ki(x) has degree i+ j ~ 2t < d'. Denote the Krawtchouk 
expansion of this polynomial by (J(x) = L, (J"K"(x). Using the detailed orthogonality 
relation (1.3), we find that ((3(x), l)n = ((3(x), Ko(x))n = f3o2n. Therefore 

f3o2n = ((3(x) , l)n = (K;(x)Kj(X), l)n = (I(;(x), Kj(x))n = Ó;j (;) 2n. (1.21) 

Combining Lemma 1.5 with Equations (1.20) and (1.21), we infer that 

(1.22) 

From Equations (1.19), (1.20), and (1.22) we now obtain the following result: 

(1.23) 

It follows, that ai = 0. 0 
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Chapter 2 

Lower Bounds on Covering Codes 

2.1 Introduetion 

A basic question concerning the covering radius of codes is how todetermine K(n, r), the 
minimum cardinality of any code of length n with covering radius r. For Iinear codes this 
question amounts to determining the minimum dimension k such that an [n, kj code exists 
with covering radius (at most) r . 

In this chapter we are interested in finding lower bounds on the size of a code with a 
prescribed covering radius. The cardinality ICI of any block code C of length n and covering 
radius r satisfies the inequality 

Equality in this so-called Sphere Gavering Bound holds only if C is a perfect code, i.e. has 
minimum distance d = 2r + 1. A necessary condition for this to occur is (r + 1) I (n + 1). 
Whenever (r + 1) (n + 1), we can improve this sphere covering bound. This improved 
bound, the so-called Van Wee bound [84], can be derived in exactly the same way as the 
well-known Johnson bound for error-correcting codes [64, p. 532]. Recently, Brouwer and 
Tolhuizen [6] obtained an improvement of the Johnson bound for binary linear codes. Since 
the proofs of the Johnson bound and the Van Wee bound are closely related, one might also 
expect improvements of the Van Wee bound for binary linear codes. In fact, improvements 
of the Van Wee bound for binary linear codes have already been reported in [46]. We follow 
a similar approach, but obtain many more results, only using some simple observations. 

The existence of a perfect code of length n and minimum distance d = 2r + 1 imposes 
a much stronger condition on the parameters r and n than the divisibility constraint 
(r + 1) I (n + 1), viz. there should exist an (r + 1)- (n, 2r + 1, 1) design. If such a design 
does not exist, then we can, again, improve the sphere covering bound. 

In this chapter we wil! derive bounds that improve upon the sphere covering bound and 
compare the results with the Johnson bound for error-correcting codes. 
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2. 2 Preliminaries 

In this section we introduce some notions to facilitate the exposition in the rest of the 
cbapter. 

We use the following notations. The all-zero vector and the all-one vector are denoted 
by 0, resp. 1. The vector e; denotes the vector with all entries equal to zero, except for 
the ith coordinate, wbich is one. In addition, for any two subsets U, V of IF~ we define 
U+ V := {u+ v I u E U, v E V}. Reeall from tbe previous chapter tbat the sphere B.(x) 
of radius s around x E ~is defined by B.(x) := {y E JF~ I d(x, y) ~ s }. The cardinality 
of tbis sphere is denoted by V(n, s). 

The notion of packing and covering design wil! prove to be useful in this chapter. 

Definition 2.1 Let S be a set of v elements and let B be a collection of subsets of S 
(the so-called blocks), each with cardinality k. The pair (S, B) is called a t-(v, k) packing 
[covering] design, if for every T C S with cardinality ITI = t there is at most [at least] one 
elementBof B such that TC B. The maximum number of blocks of any t-(v, k) packing 
design is denoted by J.(v, k , t); the minimum number of blocks of any t-(v, k) covering 
design by Je( V, k, t). 

Notice that J.(v, k , t) ~ Jc(v, k, t) with equality if and only if there exists a i-design with 
parameters t-( v, k, 1) ( cf. Definition 1.8). 

Lemma 2.2 Fort> 0 the numbers J.(v, k, t) and Jc(v, k, t) satisfy the following recurrence 
relations: 

J.(v,k,t) ~ lf J.(v -1,k -1,t -1)j, 

Jc(v,k,t) 2: rtJc(v-1,k-1 ,t-1)l. 

Moreover, fort= 0 we have J.(v, k, t) = Jc(v, k, t) = 1. 

Proof: Let (S, B) be a t-(v, k) packing design with J.(v, k, t) blocks (t > 0). The number 
of blocks that contain a fixed element of S is at most J.(v- 1, k - 1, t- 1). Therefore 
the sum of the cardinalities of the blocks of (S, B) satisfies the inequality k · J.(v, k, t) ~ 
v · J.(v -1,k -1, t -1). Since the numbers J.(v,k,t) are all integers, the result follows. 
The statements for Jc(v, k, t) can be proved similarly. 0 

The notion of multiset wil! prove to be useful in Section 2.4. 

Definition 2.3 Let X be a finite set. A function J : X -+ IN U {0} is called a multiset 
(on X). For any x E X, J(x) is called the multiplicity of point x in multiset J . For 
any multiset J on X and for any set S Ç X, the projection (f)s of J on S is defined by 
(f)s(x) := J(x) if x E S, and (f)s(x ) := 0 otherwise. The cardinality IJl of a multiset J 
is defined by IJl := I: J(x) . 

x 
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The next lemma will be used in Section 2.5. 

Lemma 2.4 [84, Lemma 6] Let s, t ~ 0. For all x, y E ~ the quantity IB.(x) n Bt(Y)I 
only depends on d(x,y) and is non-increasing in d(x,y). 

Proof: The quantity [B.(x) n B1(y)[ only depends on d(x, y), since it is invariant under 
permutations of the coordinate positions and translations in IF'2. Let x = (0, 0, 0), y 1 = 
(1, 0, 0), and Y2 = (1, 1, 0) with wt(y2) = i. Let A := B,(x) n B1(y1) and B := B,(x) n 
B1(y2 ). To prove the lemma we show that [A[~ [B[. 
We have A\ B = {z E lF'2 I wt(z) ::; s, z; = 0, d(z, y 1) = t}. Similarly, we have B \A= 
{zE IF2[ wt(z)::; s,z; = 1,d(z,y2 ) = t}. Puncturing a vector wE IF2 on position i is a 
linear mapping; the result is denoted by w'. Puncturing y 1 , Y2. and z E JF2 on position i 
yields the veetors y' and z' in ~-1 . Now (A \B)' = { z' E JF'.l-1 

[ wt(z') ::; s, d(z', y') = t}. 
Similarly, (B\A)' = {z' E ~-1 I wt(z') ::; s-1, d(z', y') = t}. Therefore (A\B)' 2 (B\A)', 
hence IA\ B[ = !(A\ B)'l ~ [(B \A)'[ = [B \A[. This proves that [A[ ~ [B[. 0 

2.3 The J ohnson Bound 

Most lower bounds on the size of a covering code that we discuss in this chapter turn out 
to be direct analogues of the well-known Johnson bound for error-correcting codes [64, p. 
532]. For this reason we discuss the Johnson bound in detail. 

The size of any code (n, M, 2e + 1) code C satisfies the trivia! inequality 

(2.1) 

Equality in this so-called Sphere Packing Bound holds only if C is a perfect code; often 
better upper bounds are known. We will discuss the Johnson bound, which improves on 
the sphere packing bound and gives astrong condition on the parameters of codes meeting 
the sphere packing bound with equality. 

Before we derive the Johnson bound, we first give a definition. 

Definition 2.5 A constant weight code with parameters (n, d, w) is a code of length n 
with minimum distance at least d for which all codewords have weight w. The maximum 
size of any (n, d, w) constant weight code is denoted by A(n, d, w). 

Two different words in an ( n, d, w) code interseet in at most w - f d/21 positions, hence 
an (n, d, w) code is a t-packing design for any t ~ (w + 1)- fd/2l Using Lemma 2.2, we 
immediately obtain the following result. 
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Lemma 2.6 A(n, d, w) ~ l;-A(n- 1, d, w- 1)J if d ~ 2w, and A(n, d, w) = 1 if d > 2w. 

Now we are ready to derive the Johnson bound. 

Let C be an (n, M,d) code with d = 2e + 1. Let Ce+l :={x E JF'; I d(x,C) = e + 1}. Since 
C has minimum distance d = 2e + 1, we have 

(2.2) 

The Johnson bound can be derived by estimating the cardinality of Ce +I, the set of words 
at distance e + 1 from the code. 

We obtain an estimate on the cardinality of Ce+ I by estimating in two ways the cardinality 
of set S defined by 

S := {(c,x) I c E C,x E Ce+I,d(c,x) = e + 1}. 

Let Ad be the average value of Ad(c) over all c E C. Let J.L be the average value of Ae+l(x) 
over all x E Ce+l · Then we obtain 

J.LICe+ll = xEt+t Ae+l(x) = ISI = E ( (e: 1)- Ad(c)(~)) = ICI ( (e: 1)- Ad(~)) · 
(2.3) 

Combining (2.2) with (2.3), we get the following bound on the size of code C: 

(2.4) 

We now determine estimates for parameters Ad and J.L. By definition of the numbers 
A(n, d, w) we have 

A;(x) ~ A(n, d, i) for all x E JF~ . (2.5) 

Using Lemma 2.6, we find that 

Ad~ A(n, d, d) and J.L ~ A(n, d, e + 1) = lnf(e + 1)J . (2.6) 

Sustituting estimate (2.6) for parameters Ad and J.L in Equation (2.4), we get the following 
upper bound on the size of code C, known as the Johnson bound: 

(2.7) 

By Lemma 2.6 we have A( n, d, d) ~ (e:l) / (~), herree the Johnson bound always improves 
u pon the sphere packing bound. The bounds coincide iff there exists an ( e + 1 )-( n, 2e + 1, 1) 
design. 



2.4 The Van Wee Bound 21 

In the remainder of this chapter we will derive lower bounds on the size of a covering 
code, which bear astrong similarity with the Johnson bound (2.7) . In order to compare 
these bounds with the Johnson bound, it is useful to consider the following two specialized 
versions of the Johnson bound: 

• From Lemma 2.6 we infer that (~)A(n,d,d) ~ (:) l;~~J. Combining this estimate 
with the Johnson bound (2.7), we get the following, original, version of the Johnson 
bound: 

ICI {t (~) + (:) (::22 -l::22J)} ~ 2n. 
i=O t le+IJ e+1 e+1 

(2.8) 

• From Lemma 2.6 we infer that (.~ 1)A(n, d, d) ~ (e~ 1)A(n-e+1, d, e+2). Combining 
this estimate with the Johnson bound (2.7), we get the following version of the 
Johnson bound: 

{ ( ) 

( n+l) ( ) } • n e (n+1-e)(n-e) n 
ICI L . + !!±ll~J ( 2)( 1) -J.(n-e+1,e+2,2) ~ 2. 

i=O 2 e+2 e+l e + e + 
(2.9) 

(Here we used the equality A(n- e + l, 2e + 1, e + 1) = J.(n- e + 1, e + 2, 2).) 

In Section 2.4 we will derive the direct analogue of bound (2.8) for covering codes, a bound 
known as the Van Wee bound. In Section 2.7 we will derive the direct analogue of bound 
(2.9) for covering codes, a bound known as the Zhang bound. In Section 2.5 and Section 2.8 
we consider improvements of either bound for binary linear codes. 

2.4 The Van Wee Bound 

In the previous section we discussed the well-known Johnson bound for error-correcting 
codes. Here we derive a similar bound for covering codes, the so-called Van Wee bound 
[84] . 

Let C be an (n, M, d)r code. Let Cr := {x E JF~ I d(x, C) = r }. Let f(x) := IBr(x) n Cl 
and let A(x) := f(x) - 1 for all x E JF~. Since C has covering radius r , A is indeed a 
multiset and we have 

(2.10) 

The Van Wee bound can be derived by estimating the cardinality of multiset A, thesetof 
words that are covered more than once, counting multiplicities. 
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We obtain an estimate on the cardinality of A by estimating in two ways the double 
summation 

S:= L L A(z). 
xeC. z:d(z,x)$1 

Let ê be the average cardinality of (A)B,(x) over all x E Cr. Let J.L be the maximum size of 
B1(z) n Cr over all zE JF~ with A(z) > 0. Then we obtain 

J.LIAI ~ L A(z) ·IBI(z) n Cri= s = L I(A)B,(x)l = êiCrl· (2.11) 
7:EF2 xeC. 

From Equation (2.11) we infer that the cardinality of A satisfies the inequality 

ê 
lAl~ -ICrl · 

J.L 

Combining (2.10) with (2.12) and making use of the lower bound on ICrl given by 

we get the following bound on the si ze of code C: 

ICI {t (~) -_ê (n)} ~ 2n. 
i : O Z J.L + ê T 

We now determine estimates for parameters ê and J.L. 

First we estimate the quantity I(A)B,(x)l for all x E Cr. 

(2.12) 

(2.13) 

(2.14) 

Let d(x, C) = r and define Tr(x) := {y E JF~ I x- y E C and wt(y) ::; r + 1}. Notice that 
Tr(x) contains only veetors of weights rand r + 1. Define a;:= I{Y E Tr(x) I y; = 1}1 for 
all i, 1 ::; i::; n, and a00 := I{Y E Tr(x) I wt(y) = r}l . For all codeworcis c E C we have 
d(x + e;, c) ::; r iff d(x, c) ::; r + 1 and x; =I= c; . Therefore a; = IBr(x + e;) n Cl = f(x + e;) 
and aoo = IBr(x) n Cl = /(x). 

n 
Since L: a;+ aoo = (r + 1)1Tr(x)l, it follows that 

i= I 

I(A)B1(x)l = (r + 1) (ITr(x)l- ~::) , if d(x, C) = r. (2.15) 

Since C has covering radius r, all a; and a00 are positive, hence suppTr(x) = {1, ... , n} and 
ITr(x)l ~ r~~n. Tagether with Equation (2.15) this implies that ê satisfies the inequality 

(rn+1l n+1) ê ~ (r + 1) -- - -- . 
r+1 r+l 

(2.16) 

Now we estimate the maximum value of IB1(z) n Cr i over all zE~ with A(z) > 0. 
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Let zE IF; with A(z) > 0, i.e. f(z) > 1. Let T(z) := {y E IF; I z-y E C and wt(y):::; r}. 
All veetors z + e; with iE suppT(z) are at distance < r from code C. If d(z,C) = r, then 
lsuppT(z)i ~ r+ ld/21, since z is covered at least twice and the distance between different 
codeworcis is at least d. Similarly, if d(z,C) = r- 1, then lsuppT(z)i ~ r- 1 + ld/2l By 
definition of J-t it follows, that 

IB1(z) nCr l :::; J-t:::; (n+ 1)- (r+ ld/21), if zE IF; and A(z) > 0. (2.17) 

Substituting the estimates (2.16) fore and (2.17) for J-t in Equation (2.14) and taking d = 1, 
we get the following lower bound on the size of code C, known as the Van Wee bound: 

ICI {i:(~)- ~~~ (f~l- ~)} ~ zn. 
i=O t I r+l 1 r + 1 r + 1 

(2.18) 

Remark 2.7 Notice the strong similarity between the Van Wee bound and the original 
version of the Johnson bound for error-correcting codes (2.8) . This correspondence is no 
coincidence: the original version of the Johnson bound and the Van Wee bound can be 
derived in exactly the same way. 

2.5 An Impravement ofthe Van Wee Bound for Binary 
Linear Codes 

The Van Wee bound improves on the sphere covering bound, whenever (r + 1) (n + 1). If 
C is a linear code, we can sometimes improve this bound further. The main idea is that the 
situation ITr(x)l = 1;$-t 1 cannot occur too often, because of the linearity of the code. We 
will see that the actual minimum distance of the code also plays a role. The impravement 
of the Van Wee bound for binary linear codes is entirely based upon a better estimate for 
ê than estimate (2.16). We use the terminology introduced in the previous section. 

Let C be an [n, k, d]r code and let n + 1 = a(r + 1)- b, with 0 :::; b < r + 1. From the 
proof of the Van Wee bound we infer that all sets Tr(x) , with d(x, C) = r, have cardinality 
ITr(x)l ~a. We estimate how often the equality ITr(x)l =a can occur. 
First wedefine c~l) := {x E Cr IITr(x)l =a}. Let Q and /3 be defined by Q := IC~1 )1 and 
a+ /3 = ICrl· Parameter ê in the proof of the Van Wee bound can now be estimated by 

ab + /3(r + 1 + b) 
ê~ a+/3 . (2.19) 

We can write this in a form similar to Equation (2.16) and get 

ê > (r+1) - - - - - + -- . (rn+1l n+1 /3 ) 
- r+1 r+1 a+ /3 

(2.20) 
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Our impravement of the Van Wee bound for binary linear codes is now obtained by sub­
stituting estimate (2.20) for c and estimate (2.17) for p, in Equation (2.14) , once we have 
obtained a suitable upper bound for parameter a (or a lower bound for parameter (3). 
Notice that in the Van Wee bound (3 is always taken to be zero. For linear codes we can 
often obtain a better estimate for parameters (3 and a. 

We now determine estimates for the parameters a and (3. We distinguish two cases, de­
pending on the parity of a. 

Case 1: a is odd. 

Let d(x,C) =rand suppose JTr(x) J =a. Lets:= I:Tr(x), the sum of the veetors in 
T.(x). If s; = 0, then a; = f(x + e;) is even, otherwise a; is odd. Hence the number of 
zeros in vector s equals the number of i, 1 :S i :S n, for which a; is even. Since all a; and 

n 
a00 are positive, I: a;+ a00 = (r + 1)JTr(x)J, and IT.(x)l =a, at most b numbers a; can 

i~ l 

begreater than one. Therefore vector s has weight wt(s) ~ n - b. The code is linearand 
a is odd, hence veetors s and x are in the same coset of code C. So x+ C = z + 1 + C 
with z := 1 + s of weight wt(z) ::; b. Using the linearity of the code, we infer that 
x E (Bb(1) + C) n C. = (Bb(1) n Cr)+ C. This implies that a and (3 can be estimated by 

(2.21) 

In particular, if C contains the all-one vector, i.e. is self-complementary, and if b < r , then 
a= 0. In general we always have 

IBb(1)nCrl :S V(n,b)- V(r, b) + 1. (2.22) 

This follows from Lemma 2.4 in the following way: Since code C has covering radius r, we 
have d(1,c) :Sr forsome c E C. Now 1Bb(1) n Br_1(c)J is minimal ifd(1;c) = r (apply 
Lemma 2.4). Therefore 

IBb(1) n Er-I (c)J ~ L (n ~ T) (T) ~ V(r, b) - 1. 
i <j , i+j$b z J 

(2.23) 

Combining .Equations (2.21) and (2.22) we get the following estimate for parameters a 
and (3: 

a+f3= 1CrJ, 
a :S min{(V(n, b)- V(r, b) + 1) ·JCJ, JCr l}. 

(2.24) 

Case 2: a is even. 

Let e := L(d- 1)/2J. We consider the case 0 :S b :Se. 
Let d(x, C) = rand suppose ITr(x)J = a. Let c :=I: Tr(x), the sum of the veetors in Tr(x). 
Since Cis a linear code and a is even, the vectorcis a codeword of C. As in Case 1, we find 
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that wt( c) ~ n- b. Notice that if e; = 0, then the vector x+ e; is covered an even number 
of times, otherwise an odd number of times. Code C has minimum distance d ~ 2e + 1, 
hence C contains at most one codeword of weight at least n - e. Si nee wt( c) ~ n - b and 
b ~ e, the vector c does not depend on the actual choice of x E C~l). We consider two 
cases. 
(I) If C does not contain the all-one vector, then wt(c) ~ n- 1. Now c; = 0 forsome 
i, 1 ~ i ~ n, hence x + e; is covered an even number of times, i.e. at least twice. This 
means that x+ e; has positive multiplicity in multiset A. Since c does not depend on 
the actual choice of x E c~I)) in fact the whole set e; + c~l) has positive multiplicity in A; 
therefore n = IC~l)l ~lAl. 
(11) If C contains the all-one vector, then c = 1. Now all veetors x+ e; are covered an 
odd number of times, i.e. all A(x+e;) are even. Since ITr(x)l =a, we have I(A) 81 (x)l = b. 
Therefore A(x) = b(mod 2), i.e. IBr(x) n Cl = (b + 1) (mod 2) . If b is odd, then x 
is covered an even number of times, i.e. at least twice. This means that x has positive 
multiplicity in A. Since c does not depend on the actual choice of x E C~l), we have 
n = IC~1 )1 ~ lA l. In fact, the argument works for all odd b, 0 ~ b < d, since C contains the 
all-one vector. If b is even, then we cannot expect an improvement of the sphere covering 
bound, since this occurs for the perfect Hamming and Golay codes (take b = 0). 
Depending upon whether C contains the all-one vector, parameters n and {J can now be 
estimated by 

n+fJ=ICrl, 

Q ~ min(IAI, ICrl) if { 1 !l" C, 0 ~ b ~ l(d- 1)/2J 
1 E C, 0 ~ b < d, and b is odd ' 

(2.25) 

n ~ !Cri in all other cases. 

In general it is not known whether C contains the all-one vector. If it is known that C 
does not contain any codewords of weight at. least n- b, then we always have C~1 ) = 0, i.e. 
n = 0. D 

Remark 2.8 Notice that our improverneut of the Van Wee bound for binary linear codes 
works best if a is odd. For a even, the minimum distance of the code is involved, but 
generally not known. When applying this bound, we may safely assume that the linear 
code has distance d ~ 3, however. This can be seen as follows: when applying our bound, 
we always consider thc smallest length n such that an [n, n - m]r code possibly exists. 
This code should have minimum distance d ~ 3, since otherwise we could have deleted all 
the double columns and zero-columns from a parity check matrix of this code to obtain a 
shorter linear code with the same redundancy mand covering radius r, but with minimum 
distance d ~ 3. In the next section we follow the procedure described above and hence 
we may assume that d ~ 3. We will not make any further assumptions on the minimum 
distance. Consequently, when we consider codes with a even, we only obtain improvements 
on the Van Wee bound if b = 1. Our bound can also be used to rule out the existence of 
many quasi-perfect codes. We do not consider quasi-perfect codes separately, though. 
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We followed an approach similar to that in [46]. Our bound and the improvement of the 
Van Wee bound for binary linear codes obtained by Hou correspond in the following sense: 

• for a odd, Hou obtained the same bound. It is remarkable that in [46] estimates on 
the size of set Bb(l) n Cr were only given for b = 0, 1, and 2. The next section proves 
that estimate (2.22) for IBb(l) nCrl, although simple, already gives rise to many new 
bounds. Most of the times when we improved a previously known lower bound, b 
was three, four, or five, but also higher values occurred. For b > 2 estimate (2.22) 
can be sharpened using Equation (2.23) . During computations, this sharpening did 
not produce further improvements, though. 

• for a even, Hou only considered codes with n + 1 = a(r + 1)- 1 and obtained as 
es ti mate 

a~ ub:= ~ ((~) + (~=:)) ICI. (2.26) 

In computations, estimate (2.25) for the value of a is always better than estimate 
(2.26) in [46]. 

Compared to the improverneut of the Johnson bound for binary linear codes [6], our im­
provement of the Van Wee bound for binary linear codes is less good. From our point of 
view this indicates that the covering problem is harder to tackle than the corresponding 
packing problem. 

Example 2.9 To demonstrate the improvement of the Van Wee bound for linear codes 
we prove that [30, 18]3 codes do not exist. 
Suppose a [30, 18]3 code exists. From Equations (2.10) and (2.13) we infer that lAl = 
(V(30, 3)- 212)ICI = 430ICI and I Cri 2: (212

- V (30, 2))1CI = 3630ICI. We have 31 = 8·4 -1, 
soa= 8 and b = 1. We may assume that d 2: 3, hence application of estimate (2.25) yields 
a ::; lAl = 430ICI and (3 2: 3200ICI. Substituting the estimates for a and (3 in Equation 
(2.20) we get é 2: 1 + 4(1 - 3~33°0 ). From Equation (2.17) and d 2: 3 we obtain the bound 
J.L::; 26. Now Equation (2.12) gives rise to the lower bound lAl 2: 631ICI, in conflict with 
the exact value lAl = 430ICI. This finishes the proof. 

2.6 lmplications of the Improved Bound 

In this section we compare our improvement of the Van Wee bound for binary linear codes 
with bounds obtained in the literature. 

We wil! frequently use the functions l(m, r), which denotes the smallest integer n such 
that an [n, n - m]r code exists, and t[n, kj, which denotes the minimum covering radius 
achievable by any [n, kj code. 
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Our improvement of the Van Wee bound for binary linear covering codes gives rise to many 
improvements on the tables for t[n, kj, with n ~ 64, and to a number of improvements on 
the tables for l(m, r), with m ~ 24 and r ~ 12. Below we give an impression of the strength 
of our bound, compared to improvements on the tables of [8j and [32j mentioned in the 
literature. 

• In [40j Honka.la listed seven improvements on t[n, kj within the range of n ~ 33. Only 
two of them cannot be obtained by our simple bound: t[33, 9] ~ 9, t[33, 15j = 6. 

• In [46, 47j Hou improved several bounds on t[n, kj. Since our bound is a strengthening 
of his bound, all these bounds can also be obtained using our bound. The same 
remark holds for the bounds mentioned in the paper by Van Wee [84j. 

• In [90j Zhang and Lo mentioned sixty-five improvements on t [n, kj within the range 
of n ~ 64. Fifty-two of them can also be obtained by our simple bound, however; 
only thirteen of them cannot be proved in this way: 

t[34,8j ~ 10, t[39, 11j ~ 10, t[40, 10j ~ 11 , t[47, 11] ~ 13, t[53, 13j ~ 14, 
t[54, 12j ~ 15, t[59, 12j ~ 17, t[59, 15j ~ 15, t[60, 14j ~ 16; t[36, 15] = 7, 
t[44, 8] ~ 14, t[50, 13j ~ 13, t[52, 11j ~ 15. 

(The entry t[56, 18j ~ 13 in the tables of [90j is in error and should read t[58, 18j ~ 13. 
This result also follows from our bound.) 

• In [91] Zhang and Lo mentioned twenty improvements on t[n, kj within the range of 
n ~ 64. Ten of them cannot be obtained via our bound: 

t[36, 11j ~ 9, t[39, 8j ~ 12, t[42, 7j ~ 14, t[47, 21] ~ 8, t[54, 24] ~ 9, 
t[56, 23j ~ 10, t[59, 23j ~ 11, t[62, 23j ~ 12, t[63, 16j ~ 16, t[63, 26j ~ 11. 

(The entry t[62, 63j ~ 8 in the tables of [91j is clearly in error. It should read 
t[62, 33j ~ 8 and also follows from our bound.) 

• In [32j Graham and Sloane determined the exact value of t[n, kj for all k ~ 5. In 
genera!, these exact values cannot be obtained via our bound. 

• Several other results mentioned in the literature cannot be obtained by our simple 
bound. This remark applies to the following bounds: t[12, 6j = 3 [8, 32], t[15, 6j = 4 
[72], t[23, 15j = 3 [11], t[18, 11j = 3 and t[64, 53j = 3 [88j. However, in Chapter 3 we 
wil! present a systematic way to prove those bounds and some new bounds as well. 

A comparison of our bound to the bounds mentioned in the !iterature [8, 11, 32, 40, 46, 
47, 72, 84, 88, 90, 91j gives rise to the following improvements on l(m,r) for m ~ 24 and 
r ~ 12: 
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l(12, 2) 2 92, l(12, 3) 2 31, l(16, 3) 2 75, l(19, 3) 2 148, l(20, 3) 2 187, 
l(21, 3) 2 235, l(22, 3) 2 295, l(23, 3) 2 371, l(24, 3) 2 467, l(15, 4) 2 32, 
l(17, 4) 2 44, l(18, 4) 2 53, l(19, 4) 2 62, l(20, 4) 2 73, l(21, 4) 2 86, 
l(22, 4) 2 103, l(23, 4) 2 122, l(24, 4) 2 144, l(16, 5) 2 27, l(19, 5) 2 39, 
l(21, 5) 2 51, l(24, 5) 2 76, l(19, 6) 2 30, l(23, 6) 2 46, l(23, 7) 2 37, 
l(24, 7) 2 40, l(23, 8) 2 31. 

We get the following improvements on t[n, k] for n :S 64: 

t[26, 10] = 6, t[30, 7] > 9, t[30, 18] = 4, t[31, 16] = 5, t[33, 6] > 11, 
t[36, 13] 2 8, t[38, 19] = 6, t[39, 15] 2 8, t[43, 26] = 5, t [45, 22] 2 7, 
t[46, 14] 2 11, t[49, 16] 2 11, t[50, 29] = 6, t[52, 25] 2 8, t[52, 34] = 5, 
t[58, 18] 2 13, t[59, 17] 2 14, t[61,6] > 23, t[61, 27] 2 10, t[61 , 42] = 5, 
t[62, 19] 2 14, t[64, 6] > 24, t[64, 7] > 23. 

When applying our bound, we find that certain lower bounds on t[n, kJ can only be attained 
by linear codes with a low minimum distance. In particular this holds for the bounds 
t[47, 6] 2 16 (d :S 6), t[54, 6] 2 19 (d :S 8), and t[54, 7] 2 18 (d :S 8). Here the maximal 
feasible distance of codes attaining the lower bound is mentioned in brackets. However, if 
the code is not a quasi-perfect code, i.e. if d < 2r -1, we can slightly refine estimate (2.13) 
on the size of Cr and estimate (2.12) on the size of A, using e.g. the observation that if 
d < 2r- 1 then for all codeword pairs (c, c') with d(c, c') = d the set Br- 1(c) n Br_1(c') 
is nonempty. In this way we can show that none of the three mentioned lower bounds can 
be attained. Since this refinement produces only three new lower bounds, we abstain from 
details. 

t[47, 6] 2 17, t[54, 6] 2 20, t[54, 7] 2 19. 

The comparison given above shows that most bounds for linear covering codes obtained via 
others methods can also be obtained via our bound. Moreover, we obtained a large number 
of improvements of previously reported bounds. This is remarkable, since the computation 
of our lower bound only requires as input the parameters [n, k, d]r of the code. FU.rther 
improvements of our bound could be obtained if one could drop the restrietion on b in the 
proof of our bound, whenever a is even. In fact, in all but two cases 1 where other methods 
led to b~tter bounds we had to apply our bound with a even. 
Some results mentioned in the literature also hold when the restrietion to linear codes is 
dropped. In this respect the paper by Zhang [89] is especially worth mentioning. This 
bound is the subject of the next section. 

1These cases were t[36, 11] ~ 9 and t[54, 24] ~ 9 (bounds obtained by Zhang and Lo, see [91]). 
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2. 7 The Zhang Bound 

Suppose all x E IF2 satisfy the inequality 

n 

f(x) := L À;A;(x) ~ (J. (2.27) 
i=O 

Summing this inequality over all x E IF'2 and making use of the equation 

:l:{A;(x) I x E IF2} = IC1(7)• (2.28) 

we get the following bound on the size of code C: 

(2.29) 

The Zhang bound can be derived by determining inequa!ities of the form (2.27) . 

Let C be a binary code of length n with covering radius r. Throughout this section, we 
denote the weight distribution of the translate x+ C by {A;}~0 , if the vector x E IF'2 is 
clear from context. If convenient, we identify codeworcis with their supports. 

We obtain inequalities of the form (2.27) by consiclering functions tp : IN -> [0, oo) with 
the property that 

Ar+l + Ar+2 ~ tp(Ar-1 +Ar) for all XE fF2 with d(x,C) ~ r- 1. (2 .30) 

Notice that function tp yields an estimate on Ar+l + Ar+2 as a function of Ar-I +Ar. In 
general it is difficult to apply estimate (2.30) directly, since the exact value of Ar-I +Ar is 
usually not known. lnstead of consiclering estimate (2.30), we therefore consider a weighted 
version of this inequality. For any positive number m1 E IR define 

mo := m0 (m1) = min{m1 k + tp(k) I k > 0} . (2.31) 

Using the definition of m0 and estimate (2.30), we find that all x E IF'2 satisfy the inequality 

r- 2 
f(x) := moL A;+ m1 (Ar-I +Ar)+ (Ar+l + Ar+2) ~ mo. (2.32) 

i=O 

Combining (2.32) with (2.27) and (2.29), we get the following bound on the size of code C: 

ICI {t (n) - (n~l) ((mo- mi)- (n + 1- r)(n- r))} ~ 2n . (2.33) 
i = O z mo ( r + 2) ( r + 1 ) 
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Equation (2.33) depends on the actual choices for function cp and parameter m 1 . 

At this point, the reader might think that the value of parameter r does not play an 
essential role. We should point out, however, that it does, since it imposes restrictions on 
the possible choices for function cp. Later on, when we choose function cp, we wil! need that 
r is the covering radius of code C. 

First we choose parameter m 1• It is clear from (2.31) that m0 - m 1 ~ cp(1). We choose m 1 

in such a way that m0 is minimal among all pairs (m0 , mJ) for which m 0 - m 1 = cp(l), i.e. 
m 1 is the smallest number such that m1 + cp(1) ~ m 1 k + cp(k) for all k > 0. Hence 

cp( 1) - cp( k) 
m0 = m 1 + cp(1) and m 1 = s := max{ k I k > 1} . • - 1 

(2.34) 

Notice, that if e is the !in€ below the graph {(k, cp(k)) I k > 0} that meets this graph in 
k = 1 and has maximal slope, then e(k) = cp(1) - m 1 x (k - 1). Substituting (2.34) in 
Equation (2.33) , we get the following lower bound on the size of code C: 

ICI {t (n) - (n~l) (cp(l)- (n + 1- r)(n- r))} 2: 2n. 
i=O 2 s+ cp(1) (r+2)(r +1) 

(2.35) 

Now we show that function cp : IN -+ [0, oo) defined by 

cp(k) := f c(n + 1- kT, r + 2, 2) (2.36) 

satisfies the properties of (2.30). Reeall that fc(v, k, t) denotes the minimum cardinality of 
a code of length v with codewords of weight (at most) k such that every set of t different 
coordinates is contained in the support of at least one codeword. 

Let d(x, C) 2: r - 1. For all s 2: 0 let A, be the collection of codewords of x + C of 
weight s. Let X := {1, . .. , n} \ supp(A- 1 U A). Notice that A. = IA.I and that 
lXI 2: n- (r- 1)Ar-l- rAr· 
Every pair (i , j) in X with i i-j is contained in the support of a word of Ar+! U Ar+2, for 
otherwise d(x + e; +ei, C) > r. Therefore the pair (X, Ar+ I U Ar+2) is a 2-covering design. 
In partienlar, we find that 

Ar+! + Ar+2 2: f c(n + 1 - r(Ar- 1 +Ar), T + 2, 2) if d(x, C) = T - 1. (2.37) 

If d(x, C) = r, then every coordina te i E X is in the support of a word of Ar+!, for 
otherwise d(x + e; , C) > r. Therefore the pair (X, A+1) is a 1-covering design and the pair 
(X, A+ I u A+2) is a 2-covering design. It follows, that if we define X' := X u { n + 1} and 
A~+l := {(a, 1) I a E A +I} , then (X', A~+l U Ar+2) is a 2-covering design. In particular, 
we find that 

Ar+! + Ar+2 2: ! c(n + 1 - rA., T + 2, 2) if d(x, C) = T. (2.38) 
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Combining (2.37) and (2.38), we find that the function <p defined by (2.36) indeed satisfies 
the properties of (2.30). 

If function <pis defined by (2.36), then Equation (2.35) is called the pair covering inequality. 

Remark 2.10 The pair covering inequality always improves on the sphere covering bound. 
The bounds coincide iff there exists a 2-design with parameters 2-(n + 1 - r, r + 2, 1). 
This situation occurs e.g. for perfect codes. This also motivated our choice for m 1: if 
m 0 - m 1 < <p(1), then Equation (2.33) would sometimes have been inferior to the sphere 
covering bound, e.g. for perfect codes. Our choice for function <p was motivated by a 
comparison of inequality (2.35) and the specialized Johnson bound (2.9). The pair covering 
inequality was originally proved by Zhang [89]. A similar result was obtained by Honkala 
in [40], although the proofs are different. Both papers generalize methods developed earlier 
in [84]. The reader who is interested in extensions of the methods presented in this section 
is invited to consult [91] . In that paper Zhang and Lo derive lower bounds on covering codes 
by considering, instead of functions <p with property (2.30), functions <p with the property 
that Ar+2 + Ar+3 ~ <p(Ar-2 + A,_J, A,+ Ar+!) for all X E JF~ with d(x, C) ~ r- 2. In that 
case the evaluation of function <p becomes quite complicated, however. 

To demonstrate the pair covering inequality we give two examples. We use the tables of 
lower bounds for fc(v, k, t), i.e. lower bounds fort-covering designs, provided in [40]. 

Reeall that K(n, r) denotes the minimum size of any binary code of length n with covering 
radius r . 

Example 2.11 We prove the lower bound K(33, 8) ~ 531. We use the following table of 
lower bounds for pair coverings: 

I <p(k) == !c(3~- 8k, 10. 2) 111
1
0 I ~ I ~ I ~ I 

From the table it follows, that the line f defined by e(k) := 10- 5 x (k - 1) is below 
the graph {(k, <p(k)) I k > 0} and meets this graph for k = 1 and k = 2. Therefore 
5 x k + f(34- 8k, 10, 2) ~ 5k + f(k) = 15 for all k > 0. Hence we can use the pair 
covering inequality with s = 5 and <p(1) = 10 (or m 0 = 15 and m1 = 5) and find that 
K(33, 8) ~ 531. 

This example explains the entry t[33, 9] 2 9, which is the first bound we mentioned in 
Section 2.6 that cannot be obtained by the improverneut of the Van Wee bound for linear 
codes. 

Example 2.12 We prove the lower bound K(36, 6) ~ 32,734. We use the following table 
of lower bounds for pair coverings: 
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k 
cp(k) := /c(37- 6k,8, 2) 

From the table it follows, that the line e defined by e(k) := 20- 7 x (k - 1) is below 
the graph {(k, cp(k)) I k > 0} and meets this graph for k = 1 and k = 2. Therefore 
7 x k + /(37- 6k, 8, 2) ~ 7k + e(k) = 27 for all k > 0. Hence we can use the pair 
covering inequality with s = 7 and cp(1) = 20 (or m0 = 27 and m 1 = 7) and find that 
K(36, 6) ~ 32, 734. 

We will return to this example in the next section. 

2.8 Intersections of Spheres and Hyperplanes 

The Zhang bound gives a lower bound on the size of a covering code C and is obtained by 
determining inequalities of the form (2.27). If C is a linear code, then these inequalities 
do not only yield a lower bound on the si ze of code C, but also impose restrictions on 
the weight distribution of its dual code. Using these restrictions, it is sometimes possible 
to rule out the existence of a linear covering code, with the help of coding theory. First, 
however, we derive restrictions on arbitrary (nonlinear) codes. 

Let C be a code of length n with covering radius r. By definition of the covering radius we 
have 

u{Br(c) n SIc E C} = S for every subsetS of IF~. 

In this section we derive restrictions on the intersections of C with suitably chosen subsets 
S. We will always choose S to be a hyperplane of~-

Let u E JF~ be a vector of weight w > 0 and let H be a coset of the hyperplane (u).i . For 
all x E JF~ define H;(x) := I{Y EH I d(x,y) = i}l. It is clear that 

ifx EH, 

if x tt H. 
(2.39) 

· This equation forms the basis for the next theorem, which imposes restrictions on the 
intersections of certain codes with hyperplanes. 

Theorem 2.13 Let C be a binary code of length n and let >.(x) := L: >.;l(;(x;n) be a 
polynomial in JR[x] . Suppose all x E JF~ satisfy the inequality 

n 

f(x) := L >.;A;( x) ~ {3. 
i=O 
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Let C0 := C n (u).L and let C1 := C \ C0 , where u E IF2 has weight w > 0. Then 

where the polynomials .x+(x) and .x-(x) are defined by 

.x+(x) := LÀ;Kt(x;n), resp . .x-(x) := LÀ;K;-(x;n). 

(Hence .X(x) = .x+(x)- .x-(x).) 

33 

Proof: Let H := (u).L and Jet He be the complement of this hyperplane. From Equation 
(2.39) and the definition of H;(·) we infer that 

n n 

L f(x) = LÀ; L A;(x) = LÀ; L H;(c) 
XEH i=O xEH 

n 

L À;(ICoiKt(w; n) + ICdK;- (w; n)) 
i=O 

Therefore ICoi.X+(w) + IC1 I.X-(w) ~ /3 · 2n-I. The same exercise, but now with He, yields 
the other inequality, viz. ICoi.X-(w) + IC1 I.X+(w) ~ /3 · 2n-I. D 

Remark 2.14 Let C be an (n, M)r code. We have f(x) := A0 (x) + · · · + A,(x) ~ 1 for 
all x E IF2, so we can take L: À;xi = 1 +···+x' and /3 = 1 in the above theorem. If 
we take w = 1, then Theorem 2.13 reduces to [17, Theorem 3]. If equality holds in all 
inequalities involved in proving the above theorem, then we obtain an alternative proof 
of Corollary 1.20, i.e. a(x) I .X(x), where o-(x) is the annihilator polynomial of the code 
involved. This follows directly from our theorem, using the observation that a(j) = 0 if 
and only if there is a vector u E JF~ with weight j such that the hyperpiarre (u).L partitions 
C into parts of unequal size. 

Corollary 2.15 Let C be an [n, k] code and Jet .X( x) := L: À;K;(x; n) be a polynomial in 
R[x] . Suppose all x E JF~ satisfy the inequality 

n 

f(x) := L À;A;(x) ~ /3. 
i=O 

Then the nonzero weights w in the dual code C.L satisfy the inequalities 

(2.40) 

where the polynomials .x+(x) and .x-(x) are defined as in Theorem 2.13. 
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Proof: This follows immediately from Theorem 2.13, using the definition of C1.. 0 

Remark 2.16 If one subtracts the inequalities of (2.40) from each other, one obtains the 
following inequality, which is due to Zhang and Lo [90]: 

(2.41) 

(Notice that this result also follows from Theorem 1.19.) In a slightly different form, this 
result can already be found in an earlier paper by Calderbank and Sloane [11] (they take 
2:: À;xi = 1 + x + · · · + xr and {3 = 1). 

It is clear from Corollary 2.15, that if d* is the smallest positive integer that satisfies 
(2.40), then d* is a lower bound on the minimum distance of the code Cl.. In particular, 
d* ::; d[n, n - k], where d[n, k] denotes the largest achievable minimum distance of any 
[n, k] code. (In fact, one can show the slightly stronger inequality d* :=:; d[n + 1, n + 1 - k] 
to hold, using Corollary 3.9 of the next chapter.) 
This observation can be used to rule out the existence of certain linear covering codes that 
do satisfy the Zhang bound. 

Example 2.17 In the previous example we showed that K(36, 6) 2: 32,734 = 215 - 34. 
Suppose C is a [36, 15]6 code. By Example 2.12 all x E /F~6 satisfy the inequality 

f(x) := 27 x (Ao + A1 + A2 + Aa +A4 )+ 7 x (A5 + AG) + (A1 +As) 2: 27. 

From Equation 2.41 we infer that the nonzero weights win the code Cl. satisfy 9 ::; w ::; 28. 
But d[36, 21] < 9, so evidently Cl. does not exist, nor does C. Therefore t[36, 15] 2: 7. 

2.9 Another Lower Bound 

Let C be a binary code of length n with covering radius r. As in Section 2.4, let A be the 
multiset defined by A(x) := IBr(x) n Cl- 1 for all x E /F~ . Then 

(2.42) 

We derived the Van Wee bound by estimating the cardinality of multiset A, the set of 
words that are covered more than once, counting multiplicities. The next bound, due to 
Cohen et al. [17] , can be obtained via another estimate for this multiset. Although this 
bound is in general rather weak compared with the Van Wee bound, we can still obtain 
new results applying this bound. The proof uses the function A(n, d), which denotes the 
maximum cardinality of any binary code of length n with minimum distance d. 
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Let Co be a maximal r-error-correcting subcode of c and let cl := c \Co. Let Co E Co 
and let c1 E C1• Allwordsin the set B.(c0 ) n B.(ci) are covered by c 1 , but also by the 
(unique) codeword c0 of C0 • Hence 

lAl ;::: 2:: 2:: IB.( co) n B.(ci)I. (2.43) 
coeCo, c.eC. 

Now we estimate the righthand side of Equation (2.43). The quantity IB.(c0 ) n B.(ci)I 
only depends on d(c0,c1 ) and is non-increasing in d(c0 ,ci), cf.Lemma 2.4. Therefore 

(2.44) 

From the maximality of code C0 we infer that for each codeword c1 E C1 there exists a 
codeword c0 E Co with d(ea, c1) ::; 2r. Using this, Equation (2.43), and Equation (2.44), 
we obtain the bound 

lAl ;::: (!Cl- !Col) C:). (2.45) 

Combining (2.42) and (2.45) proves the following theorem. 

Theorem 2.18 Let C be a binary code of length n with covering radius r. Then 

(2.46) 

where !Col ::; A(n, 2r + 1). 

Under certain conditions, we can take a slightly better estimate for !Col than the one in 
Theorem 2.18: if A(n, 2r + 1) = 2 · A(n- 1, 2r + 1), then we can use Equation 2.46 with 
the stronger estimate !Col ::; A(n, 2r + 1)- 1 instead (unless C is a perfect code). To see 
this, we only need to consider the case !Col = A(n, 2r + 1). We show that each codeword 
CJ E cl is at distance ::; 2r from at least two codewordsof Ca. If so, then the claim follows 
from the fact that Equation (2.45) can be sharpened to the bound 

unless C is a perfect code. Suppose otherwise, i.e. let c1 E C 1 and suppose that d( c0 , ei) ::; 
2r for exactly one codeword c0 of C0 . Then C~ := (Co \ { c0}) U {ei} is another r-error­
correcting subcode of C with cardinality IC~ I = !Col = A(n, 2r + 1). Since A(n, 2r + 1) = 
2 · A(n- 1, 2r + 1), exactly half of the codewordsof C0 has a one on a fixed position; the 
other codewords of Co have a zero there. The same remark holds for code C~. Since the 
code C~ can be obtained from C0 by interchanging the codewords c0 and c1 , it follows that 
the codewords c0 and c1 coincide on every coordinate, i.e. c0 = c1 , a contradiction. 
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To demonstrate this improvement we prove two bounds, viz. K(9, 1) ~ 55 and K(5, 1) ~ 7. 
Neither of these bounds can be obtained by combining Equation (2.46) with the weaker 
estimate ICol S A(n, 2r + 1). The bound K(9, 1) ~ 55 was independently obtained by 
Habsieger [33] by studying intersections of codes with hyperplanes. The other bound had 
been established by Stanton et al. [78] using linear programming techniques. Unlike their 
proofs, our proofs are completely elementary. A table of bounds for A(n, d) is provided in 
[64] . 

Example 2.19 From the tables for A(n, d) we see that A(9, 3) = 40. Combining Equation 
(2.46) with the estimate !Col= 40, we find that any code C Ç JF~ with covering radius one 
has cardinality ICI ~ 54. In fact this bound is sharp, i.e. if ICI = 54, then equality holds in 
all inequalities involved in proving Equation (2.46) . Since A(9, 3) = 2 · A(8, 3), we cannot 
have equalities everywhere, so ]((9, 1) ~ 55. 

Example 2.20 From the tables of A(n, d) we see that A(5, 3) = 4. Combining Equation 
(2.46) with the estimate ICol = 4, we find that any code C Ç JF~ with covering radius one 
has cardinality ICI ~ 6. Once again, this bound is sharp, i.e. if ICI = 6, then equality 
holds in all inequalities involved in proving Equation (2.46) . Since A(5, 3) = 2 · A(4, 3), we 
cannot have equalities everywhere, so ]((5, 1) ~ 7. 

Remark 2.21 Usually, we can improve Equation (2.46) further. For n = 5(mod 6) im­
provements were obtained by van Wee [86] and later on by Honkala [44] . By combining 
arguments used in proving Equation (2.46) with those used in proving the van Wee bound, 
they obtained improvements of Equation (2.46) yielding the bounds K(ll, 1) ~ 177 [86], 
resp. K(17, 1) ~ 7399 [44]. 



Chapter 3 

On the Structure of Linear Codes 
with Covering Radius Two and 
Three 

3.1 Introduetion 

In the previous chapter we discussed general lower bounds on the size of covering codes 
with a prescribed covering radius. Most lower bounds reported for covering codes [40, 46, 
47, 89, 90, 91] are extensions of the so-called Van Wee bound [84], which in turn can be 
viewed as a direct analogue of the well-known Johnson bound for error-correcting codes 
[64, p. 532]. For linear codes, a few isolated results relying on ad hoc techniques or on 
results from computer searches have been reported as wel! [8, 11, 32, 72, 88]. 
In this chapter we show how techniques from coding theory can be successfully applied 
to improve previously reported bounds for linear codes, or to prove in a simple way 
bounds that were established by computer searches. In particular, we prove a conjec­
ture by Brualdi, Pless, and Wilson [8] (Bound 3.14). Almost alllower bounds reported on 
linear codes with covering radius two and three can also be derived, in a sim pier way, using 
our methods. The chapter is organized as follows. In Section 3.2 we review some basic 
coding theory and mention some simple results regarding covering codes. In Section 3.3 
we show that a linear code with covering radius two imposes restrictions on the form of its 
dual code. We consider restrictions on the weight enumerator of the dual code and on the 
intersections of different codewords. Moreover, we show that any linear code with covering 
radius two gives rise toa number of (not necessarily linear) codes with covering radius one 
that can be obtained via the dual code. Using these restrictions, it is sometimes possible to 
rule out the existence of a covering code, with the help of coding theory. In Section 3.4 we 
apply the same methods to Iinear codes with covering radius three. We restriet ourselves 
to binary codes. 
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3.2 Preliminaries 

In this section we reviewsome results from coding theory and some simple results regarding 
covering codes, which will be used later on. 

We denote the n x n identity matrix by I,., the all-zero matrix by 0, and the all-one 
matrix by J. We reeall from the previous chapter that, for any two subsets U, V of JF2, 
the set U + V is defined as the set {u + v I u E U, v E V}. The set of different columns 
of some matrix A is denoted by {A}; the vector space spanned by its rows is denoted by 
A; its rank is denoted by rk(A). Sometimes it is useful to consider veetors that are only 
partially specified: we are only interested in some of their entries then. We call such a 
vector a template; the irrelevant positions are marked with a *-entry. For conciseness, we 
sometimes use row vectors, where formally column veetors are appropriate, and vice versa. 
It is always clear from the context, however, whether a vector should be viewed as a row 
vector or a column vector. Also, we sometimes specify the zero-positions within a matrix 
by blanks. 

We will need the following two results for linear codes. 

Lemma 3.1 [82] .Let C be a binary [n, k, dj code. Then deletion of the coordinates cor­
responding to the nonzero positions of a codeword of weight w < 2d yields a code with 
parameters [n- w, k- 1, d- lw/2J]. 0 

Lemma 3.2 [63, 64, pp. 224- 225] Let C be a one-weight [n, k, d] code without zero­
positions. Th en C is a concatenation of simplex codes and d(2k -1) = n 2k-l. In particular 
2k-l I d. o 

Below we will mention some simple properties regarding covering codes that will be used 
in the rest of the chapter. 

Let C be a binary code of length n with covering radius r. 
A trivia! lower bound on the size of C is given by the Sphere Gavering Bound 

(3.1) 

. Van Wee [84} show€d that this sphere covering bound can be improved to the bound 

1c1 {t (n)- ~~~ (r~l- ~)} ;::: 2n. 
i=O 2 r r+! l r + 1 T + 1 

(3.2) 

As a direct consequence we obtain the following result: 

If n is even, then K( n, 1) ;::: 2" fn. (3.3) 
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It can be shown that the Van Wee bound (3.2) for covering codes is the direct analogue of 
the well-known Johnson bound [64, p. 532] for error-correcting codes: it can be derived in 
exactly the same way. 

The exact value of K(n, 1) is known only in a few cases. We will use Equation (3.3), as 
wel! as the data of Figure 3.1. 

Figure 3.1: Table of J((n, 1) for smal! values of n, extracted from [84]. 

Arbitrary coverings and sphere coverings can be linked, as was shown by Blokhuis and 
Lam [4]. The result turns out to be very powerful in our context. We will prove a smal! 
extension of their result. First we give a definition. 

Definition 3.3 Let S C JF~ and let A be a binary k x n matrix. The set S is said to 
r-cover JF~ using matrix A iff {s +wAT I sE S and wt(w) Sr} = JF~. 

It is clear from the definition that a code with covering radius (at most) r corresponds to 
an r-covering using the identity matrix and that a linear code with parity check matrix A 
and covering radius (at most) r corresponds to an r-covering of the set {0} using matrix A. 

Lemma 3.4 If S r-covers JF~ using k x n matrix A, then the set C :={wE JF~ I wAT E 
S} has covering radius (at most) r. In particular, K(n, r) S ISI 2n-k. 

Proof: Let x E ~· Since xAT E JF~, we have xAT = s+wAT forsome vector sE S and 
some vector wE~ with wt(w) Sr. It follows that (x- w)AT = s, hence d(x,C) Sr. 
Therefore code C has covering radius (at most) r . 
To prove the cardinality result, we need to consider two cases. If matrix A has full row­
rank, then C has cardinality ICI = ISI 2n-k. Now suppose rk(A) =: a < k. The set S 
r-covers JF~ using matrix A. This property still holds if we apply a linear transformation 
on the elements of S and on the columns of matrix A simultaneously. Therefore we may 
assume w.l.o.g. that AT = (Arr I QT) with matrix A' of full row-rank, i.e. rk(A') = a. For 
all tE JF~-a define the set S(t) Ç JF~ by S(t) :={sE JF~ I (s, t) ES}. Now every set S(t) 
r-covers fF2 using matrix A'. Matrix A' has full row-rank, hence K(n, r) S IS(t)l 2n-a. In 
fact K(n, r) S ISI 2n-k, since IS(t)l ~ ISI 2- (k-a) forsome tE JF~-" . 0 

Remark 3.5 In [4] the same result was proved, but only for matrices of full row-rank (so 
k S n) . Our proof shows that this restrietion is not necessary, i.e. we do not require that 
k Sn. 
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The following lemma, though trivia!, has important consequences. 

Lemma 3.6 Let C Ç IF~ be a code with covering radius r . Then its extended code C has 
covering radius r + 1. 

Proof: Let d(x,C) = r. Then d((x,O),C) + d((x, 1),C) = 2r + 1, hence C has covering 
radius at least r + 1. On the other hand it is trivia! that the covering radius of Cis at most 
one more than the covering radius of C. This proves the lemma. 0 

Binary codes can be slightly modified without changing the covering radius, as is demon­
strated by the following lemma. 

n 
Lemma 3.7 Let C Ç IF~ and let C' := {(L: c;,c2 , .. . , Cn) I (c1 , ... ,en) E C}. Then these 

i=l 
codes have the same covering radius. 

Proof: The result follows from Lemma 3.6, since C and C' have equivalent extended 
codes. 0 

For linear codes it is more useful to consider the following formulation of Lemma 3.7, which 
was already mentioned in [9] for codes with an even covering radius. We will frequently 
use this 'inversion property' later on. 

( !J
0

u u), Lemma 3.8 Let. C and C' be linear codes with parity check matrices H = --orx-
resp. H' = ( ~). Then these codes have the same covering radius. 

n 
Proof: Cod~sCandC'arerelated . via C'={(L: c;,c2 , . .. ,cn) I (c1, . .. , cn)EC}. Now 

i= I 
the result follows from Lemma 3.7. 0 

Corollary 3.9 lf there exists an (n, k]r code that contains a: nonzèró codeword of weight 
w in its dual code, then there also exists an (n, k]r code that contains a codeword of weight 
(n + 1}- w in its dual code. 

Proofi Assume a word of weight w occurs in the top row of a parity check matrixHof 
C. The claim now ·follows from Lemma 3.8, after application of suitable row operations on 
this parity check matrix. 0 

In the proofs of our results we will always assume that our linear codes have minimum 
distance at least three. Here we (implicitly) use the following trivia! result. 

Lemma 3.10 [8] If there exists an [n, n- m]r code with length n ~ 2m- 1, then there 
also exists an [n, n - m]r code with minimum distance d ~ 3. 
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Proof: The covering radius of a linear code is the smallest integer r such that every 
syndrome is the sumofat most r columns of a parity check matrix of this code. Therefore 
deletion of zero-columns and double columns in the parity check matrix does not increase 
the covering radius, nor does addition of columns. D 

3.3 Linear Codes with Covering Radius Two 

In this section we derive several new lower bounds for linear codes with covering radius two. 
The key observation is that a linear covering code imposes restrictions on the structure of 
its dual code. In this way it is possible totransfarm the problem of designinga 'good' linear 
covering code into the problem of designing a (dual) linear code with a lot of structure 
imposed onto it. Techniques from coding theory will sametimes show that such a dual code 
cannot exist. We will consider restrictions on the weight distribution (one-level constraints) 
and restrictions on the intersections of different codewords (two-level constraints). 

3.3.1 One-Level Constraints 

Let C be an [n, m] code with generator matrix H 1
• If C contains a codeword of weight 

w i= 0, then we can put the generator matrix into the following 'standard' form: 

n-w w 

We will often refer to matrix H above and its constituting submatrices A0 and A 1• 

The next lemma imposes restrictions on the weight distri bution of a code with dual covering 
radius two. 

Lemma 3.11 Let C be an [n, m] code with dual covering radius two. Then the weights 
w i= 0 in C have the following properties: 

1. w (n+ 1- w) 2:: 2m-l, 

2. W 2(n-w)- (m-l) 2:: K(n - W, 1), 

3. there exists an [n, m] code C' with dual covering radius two that contains a codeword 
of weight (n + 1)- w. 

1 We use the notation H (instead of G) for the generator matrix to rernind the reader that we will he 
workingin the dual space of a code with covering radius two. 
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Proof: Suppose code C has a codeword of weight w =1- 0. Assume that generator matrix 
H of code C is in the standard form, with the bottorn row of weight w. 

1. All the syndromes of c.L with template (*, 1) should be the sum of at most two 
columns of matrix H. Each of the 2m-J syndromes of this form is the sum of one of 
the last w columns of matrix H and at most one of the first n- w columns of this 
matrix; hence w + w (n- w) = w (n + 1- w) ~ 2m-I. 

2. By Definition 3.3 the (transposed) columns of matrix A 1 I-cover /F'{'-1 using matrix 
A0 • The statement now follows from Lemma 3.4. 

3. This is a reformulation of Corollary 3.9. 0 

Remark 3.12 Notice that Property 1 of Lemma 3.11 is weaker than Property 2 of the 
same lemma, since it is implied by Property 2, using the sphere covering bound (3.1). 
Often significantly better bounds for K(n, 1) are known than the sphere covering bound, 
e.g. Equation (3.3) . 

As an application of Lemma 3.11 we derive two bounds on l(m, r), viz. /(7, 2) = 19 and 
l(2m- 1, 2) ~ 2m + 1 for m ~ 3. The bound /(7, 2) = 19 was proved by Ytrehus [88] 
using rather involved arguments and the computer. The other bound was conjectured by 
Brualdi, Pless, and Wilson [8], but up to now only the case m = 6 had been settled [9, 88]. 
The proofs are surprisingly simple. 

Bound 3.13 l(7, 2) = 19. 

Proof: Suppose C is an [18,7] code with dual covering radius two. By Property 1 of 
Lemma 3.11 we have w(19 - w) ~ 64, i.e. 5 :::; w ::=; 14. If weight fourteen occurs, 
then we have K(4, 1) ::=; l14 x 2-2J = 3 according to Property 2 of Lemma 3.11. But 
K(4, 1) = 4, so weight fourteen does not occur. Similarly, if weight thirteen occurs, then 
we have K(5, 1) :::; 6, in conflict with the value K(5, 1) = 7. Hence weight thirteen does 
not occur either, so 5 ::=; w :::; 12. Property 3 of Lemma 3.11 imposes a further restrietion 
on the set of nonzero weights of the code, viz. 7 :::; w :::; 12. Since there is no [18, 7, 8] 
code, cf. [7], we may assume, by Property 3 of Lemma 3.11, that C contains a codeword 
of weight twelve. If we put generator matrix H of code C into the standard form, with the 
bottorn row of weight twelve, then matrix Ao generates a [6, 6, 1] code (cf. Lemma 3.1), so 
rk(A0 ) = 6. So w.l.o.g. the following matrix is the generator matrix H of code C with one 
additional column adjoined to it (at the right): 

6 12 
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Every row of matrix A 1 has weight six, since d(C) == 7. Since the rows of matrix A1 have 
even weight, every sum of two different rows of matrix A 1 has weight six as wel!. Hence 
every row of H has a weight divisible by four and binary inner product zero with the 
other rows of H. Therefore all weights in the code C generated by Hare divisible by four, 
i.e. C only has two nonzero weights, viz. weights eight and twelve. It follows that C.L 
must be a uniformly packed code [58, p. 99], but uniformly packed codes with parameters 
[19, 12, ~ 3]2 do not exist [58, p. 105]. Since the number of nonzero weights in C is less 
than the dual distance, we could also have calculated the exact weight distribution of C, 
using the MacWilliams identities or Corollary 1.7, and obtained a contradiction in that 
way. Evidently code C does not exist, hence l(7, 2) ~ 19. 
Gabidulin et al. [30] have given a construction of a [19, 12]2 code, so in fact l(7, 2) == 19. 

0 

Bound 3.14 l(2m- 1, 2) ~ 2m + 1 for all m ~ 3. 

Proof: Suppose C is an [n = 2m, 2m- 1] code with dual covering radius two. From 
Property 1 of Lemma 3.11 we infer that C does not contain the all-one vector if m ~ 3. 
If a codeword of weight w # 0 occurs in C, then we have K(v,l) ~ w 2v-(2m-2>, with 
v + w = n, according to Property 2 of Lemma 3.11. 
If v is even, then we have the lower bound J<(v, 1) ~ 2v jv, cf. Equation (3.3). Thus we 
obtain the inequality v w ~ tn2 for even v. Since v+w = n, in fact equality holds and hence 
w = n/2 = 2m-l. We infer that theeven weight subcode of C of dimension k ~ 2m- 2 is 
in facta one-weight code with d = 2m-l; hence it satisfies the divisibility constraint 2k- l1 d 
( cf. Lemma 3.2), i.e. k ~ m . However, for m ~ 3 we have k ~ 2m- 2 ~ m + 1. Therefore 
code C does not exist. Hence l(9, 2) ~ 33, l(ll, 2) ~ 65, l(13, 2) ~ 129, etc. 
This setties a conjecture of Brualdi, Pless, and Wilson [8]. 0 

Bound 3.14 impraves by one the the lower bound on l(2m- 1, 2) implied by the Van Wee 
bound. It is not immediately clear whether, for codimension 2m, we can also imprave on 
the lower bound for l(2m, 2) implied by the Van Wee bound. However, aften an argument 
similar to the one given above for odd codimension gives rise to improvements. For example, 
the sphere covering bound gives l(16, 2) ~ 362. If equality holds, then all the nonzero 
weights should be odd, which is clearly impossible. In this way we obtain the bounds 
l(16, 2) ~ 363, l(18, 2) ~ 725, l(20, 2) ~ 1449, l(22, 2) ~ 2897, etc., thus improving the 
previously known bounds by one. Sametimes simply applying the Van Wee bound already 
yields improvements: in this way one obtains the bounds l(14, 2) ~ 182 and l(24, 2) ~ 5794. 
If both methods do not work in their own right, then we may sametimes fruitfully combine 
them: if we are able to show that some linear code with dual covering radius two can only 
have even weights, then we can use a slightly improved version of the Van Wee bound for 
linear codes that contain the all-one vector. For details we refer to the previous chapter. 
Below we summarize the results of this paragraph. 

Bound 3.15 l(14, 2) ~ 182, l(16, 2) ~ 363, l(18, 2) ~ 725, l(20, 2) ~ 1449, l(22, 2) ~ 2897, 
l(24, 2) ~ 5794. 
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3.3.2 Two-Level Constraints 

In the previous subsection we derived restrictions on the weight distribution of a code 
with dual covering radius two. Here we shall also consider restrictions on the intersections 
of codewords. This enables us to improve on some more lower bounds. Although the 
techniques are still easy, we have to do somewhat more work to obtain results. 

The next lemma imposes restrictions on the division of the supports of codeworcis over the 
coordinate positions, when the dual covering radius equals two. 

Lemma 3.16 Let C be an [n, m] code with dual covering radius two. Let (0, 1) be a fixed 
codeword of C of weight w =f. 0. Let c = (cL,cR) be another fixed nonzero codeword of 
code C, partitioned in the same way as (0, 1). Then the quantities a:= min{ wt(cL), n + 
1 - w- wt(cL)} and x := min{ wt( cR), w- wt(cR)} are related via 

r 2m-
2 
-a w l lwJ 

i(n+1-w)-2a ::;x::; 2' (3.4) 

whenever the denominator on the lefthand side is nonzero. 

Proof: We can put generator matrixHof code C into the following form: 

where a1 = wt(cL), x1 = wt(cR), a1 + a2 = n- w, and X1 + X2 = w. 
We may assume that x1 $ x 2 and a 1 :::; a2 + 1, if necessary by applying the inversion 
property (Lemma 3.8) and by adding the bottorn row of matrix H to the forelast one. 
All the syndromes with template (*, 11) should be the sum of at most two columns of 
matrix H, so x1 + a2 x1 + a1 x 2 ~ 2m-2

. Since x1 + x 2 = w, this is equivalent to 
Xt (1 + a2- at)~ 2m'""2 - a1 w. Elimination of a 2 via the equation a1 + a 2 = n- w now 
gives the inequality x1 (n + 1- w- 2a1) ~ 2m- 2 - a1w. Since a= a1 and x= x1, this 
finishes the proof. 0 

Remark 3.17 Notice that one can easily generalize Lemma 3.16 to the case where every 
(nonzero) syndrome of code CJ. is the sumofat most two columns of matrix H in at least 
f.L ways (in short: is covered f.L times): in that case one should replace the quantity 2m-2 in 
Equation (3.4) by /.1-2m-2. We will not use this strenghtening of Lemma 3.16 in this sec ti on. 
Nevertheless, this generalization will prove to be useful in Section 3.4, when deriving the 
bound l(9,3) ~ 17 (Bound 3.31). 
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As an application of Lemma 3.16 we derive three bounds on l(m, r), in increasing level of 
difficulty. First we prove the bound l(9, 2) ~ 34. 

Bound 3.18 l(9, 2) ~ 34. 

Proof: Suppose C is a [33, 9] code with dual covering radius two. By Property 1 of 
Lemma 3.11 we have w(34- w) ~ 256, i.e. 12 ~ w ~ 22. If weight 21 occurs, then we 
have K(12, 1) ~ 21 x 24 = 336, according to Property 2 of Lemma 3.11. But K(12, 1) ~ 
r212 /12l = 342, cf. Equation (3.3), so weight twenty-one does not occur. By Property 3 of 
Lemma 3.11 weight thirteen does not occur either. Since d[33, 9] ~ 13, code C must have 
minimum distance d(C) = 12 and we may assume, again by Property 3 of Lemma 3.11, 
that a codeword of weight twenty-two occurs. Now put generator matrix H of code C 
into the standard form, with the bottorn row of weight twenty-two. Since the minimum 
distance of C is twelve, matrix A0 has full row-rank; therefore we may assume w.l.o.g. that 
Ao = (!8 I X), where X is an 8 x 3 matrix. 
Lemma 3.16 gives arelation between the weights occurring in code Ao and the correspond­
ing weights occurring in A1. In particular we find, that ifcode Ao bas a codeword of 
weight 1 ~ a ~ 3, then the corresponding codeword in A 1 bas weight x = 11. Therefore 
three dependent nonzero codewords of Ao can never all have weights at most three, since 
their sum is zero. We will use this to prove that C does not exist. From Lemma 3.16 we 
infer that if a row of X occurs twice, then this row is (111) . Furthermore, two rows of 
X should differ in at least two positions, unless one of them is (111). Therefore matrix 
X contains the row (111) at least four times. Now matrix A0 contains w.l.o.g. the rows 
a 1 = (10000000, 111), a 2 = (01000000, 111), and a 3 = (00100000, 111). But this is impos­
sible, since the codewords a 1 + a 2 , a 1 + a 3 , and a 2 + a 3 of code Ao all have weight two and 
are dependent. Evidently code C does not exist. lt follows that l(9, 2) ~ 34. D 

The bound l(6, 2) = 13 was established by Graham and Sloane [32] using a Cray-1 com­
puter. In [8] a non-computer prooffor this bound was mentioned, but, for reasons of space, 
omitted. We give a proof, using the lemmas developed before and some elementary coding 
theory. 

Bound 3.19 l(6, 2) = 13. 

Proof: Suppose C is a [12,6] code with dual covering radius two. From Property 1 of 
Lemma 3.11 we infer that w(13- w) 2: 32, i.e. 4 ~ w ~ 9. Since d[12, 6] = 4, the 
minimum distance of code C is four and we may assume, by Property 3 of Lemma 3.11, 
that C contains a codeword of weight nine. Now put generator matrix H of code C into 
the standard form, with the bottorn row of weight nine. Lemma 3.16 relates the weights 
a occurring in code Ao and the corresponding weights x (with x ~ 4) occurring in code 
A 1 + {0, 1} via 

x = 4 for all a =/: 2, and 2 ~ x ~ 4 for a = 2. (3.5) 
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The structure of generator matrix H depends on these relations and on the rank of matrix 
A0 . The rank of matrix A0 satisfies 2 ~ rk(A0 ) ~ 3. The upper bound follows from the 
format of the matrix; the lower bound fróm the relations of (3.5). To see this, suppose 
rk(Ao) ~ 1. Then code A1 + {0, 1} contains a four-dimensional linear one-weight code 
with distance four, which contradiets Lemma 3.2. In fact, the relations of (3.5) imply that 
Ao generates either a [3, 2, 2] code or the vector space JF~ . 

Now we are ready to prove the nonexistence of code C. We will use the fact that the [7, 4, 3] 
Hamming code is a perfect code and has a 2-transitive automorphism group. 

Using the relations of (3.5), we can put generator matrix H into the following form: 

1 1 XJ Y11 Y12 
1 1 X2 Y2I Y22 

* 1 1 1 1 H= * 1 1 1 1 
* 1 1 1 1 

1 1 1 1 1 1 1 1 1 

Notice that rk(Ao) = 2 if all *-entries are zero, and rk(A0 ) = 3 otherwise. The submatrix 
below x 1 and x 2 generates a [7, 4, 3] Hamming code with covering radius one, so we may 
assume w.l.o.g. that wt(xi), wt(x2 ) ~ 1, if necessary after applying suitable row operations 
on the generator matrix. Notice that the relations of (3.5) guarantee that the upper left 
2 x 3 submatrix of H is not affected by these linear row operations! We distinguish two 
cases. 
If x1 = 0, then (yu,YI2) = (11) and w.l.o.g. x2 = (1000000) and (y21,Y22) = (01). Here 
we used the 2-transitivity of the automorphism group of the Hamming code and d(C) = 4. 
Now matrix H is completely determined and has the. following {orm: 

1 1 1 1 
1 1 1 1 

H= * 1 1 1 1 
* 1 1 1 1 
* 1 1 1 1 

1 1 1 1 1 1 1 1 1 

An inspeetion of matrix H reveals that if rk(Ao) = 3 (hence not all *-entries are zero), 
then e.g. the syndrome (101111) is not covered; if rk(A0 ) = 2, then all syndromes but 
(011110) are covered. (Note that this implies that l(6, 2) ~ 13.) 
If x 1 i- 0, then we may assume w.l.o.g. that x 1 = (1000000) and x2 = (0100000) . Here 
we used the 2-transitivity of the automorphism group of the Hamming code again. (In 
fact the *-entries can be in any one of the first three columns, but this does notaffect our 
argument.) Matrix H has w.l.o.g. the following form: 
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1 1 1 Yu Y12 
1 1 1 Y21 Y22 

H= * 1 1 1 1 

* 1 1 1 1 

* 1 1 1 1 
1 1 1 1 1 1 1 1 1 

Let y 1 := (y11 ,y21 ) and let Y2 := (y12,Y22) . We show that notall the syndromes with 
templates (*, 1110) or (*, 1100) are covered. Suppose column four of matrix H differs from 
column three in the third, fourth, or fifth position. (This happens e.g. when rk(A0) = 2.) 
Since all syndromes with template (*, 1110) should be covered, we have ((10) + {YI. y 2 }) U 
{(00), (01)} = JF~, i.e. {y1,y2 } = {(00), (01)}. Now matrix H is completely determined. 
Since the top row of matrix H has weight three and since code C has minimum distance 
four, we obtain a contradiction. If column four of matrix H does not differ from column 
three in the third, fourth, or fifth position, then column five of matrix H does, and we 
can use the same argument to show a contradiction. Therefore code C does not exist. It 
follows that l(6, 2) = 13. D 

The smallest linear code with codimension eight and covering radius two has length l(8, 2), 
where 24 $ l(8, 2) $ 26. The lower bound was proved by Calderbank and Sloane [11]; the 
upper bound by Gabidulin et al. [30]. We further narrow down this gap to 25 $ l(8, 2) $ 
26. 
The proof of the lower bound l(8, 2) :2: 25 demonstrates that our simple methods can be 
extremely powerful. The proof is rather tedious and long; therefore it is included at the 
end of this chapter as an appendix. 

Bound 3.20 l(8, 2) :2: 25. 

Remark 3.21 Our bound shows that linear (24, 216)2 codes do not exist. However, there 
does exist a nonlinear code with these parameters! This code was constructed recently by 
Etzion and Greenberg by means of a Preparata code [27] (see also Construction 4.22). 

3.4 Linear Codes with Covering Radius Three 

In this section we extend the methods developed in the previous section to linear codes 
with covering radius three. 

Let C be an [n, m] code with generator matrix H. If C contains a codeword of weight 
w =f. 0, then we can put the generator matrix into the following 'standard ' form: 
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0 D rv 

H= 0 

A E TA+ 1 
0 
1 0 0 

w n-w 

where rA+ rv + 1 = m, rA= rk(A) ::; w- 1, and rv = rk(D) ;::: m-w. 
In the sequel we will often refer to matrix H above and its constituting submatrices A, D, 
and E. 

The next lemma imposes restrictions on the weight distribution of eertaio subcodes induced 
by a linear códe with dual covering radius three. 

Lemma 3.22 Let C be an [n, m] code with dual covering radius three. Let Vw be a 
subcode of C having zeros on the support of some fixed codeword of weight w =f. 0. Then 
the weights a =f. 0 in code 'Dw have the following properties: 

1. a w (n + 1 - w- a) ;::: 2m- 2, 

2. a w 2(n-w-a)-(m- 2l ;::: K(n- w- a, 1), 

3. a (n + 1- w ~a);::: K(w- 1, 1)2m-w-I. 

Proof: Suppose code C has nonzero codeworcis of weights a and w, without overlap. We 
can put generator matrix Hof code C into the following form: 

x2 x3 
) m 1 0 0 

0 0 0 

w a n-w-a 

1. All the syndromes of Cl. with template (*, 11) should be the sum of at most three 
columns of matrix H, so a w +a w (n- w- a) =a w (n + 1- w- a);::: 2m-2 . 

2. Let X := {XI}+ {X2 } . By Definition 3.3 the set X I-covers IF'{'- 2 using matrix 
X3 . The statement now follows from Lemma 3.4, using the inequality lXI ::; a w. 
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3. Let X:= {X2} U ({X2} + {X3}), i.e. X is thesetof all words x E JF'{'-2 such that 
the syndrome (x, 10) is the sum of at most two columns of matrix H. This set has 
cardinality lXI::::; a (n + 1- w- a). All the syndromes with template (*, 11) should 
be the sumofat most three columns of matrix H, hence the set X 1-covers JF'{'-2 

using the nonzero columns of matrix X1. We may assume that matrix X1 contains a 
zero-column, if necessary after applying suitable row operations on generator matrix 
H. The statement now follows from Lemma 3.4. 0 

Using Property 1 of Lemma 3.22 and maximizing the lefthand side with respect to variabie 
a, we obtain the following corollary. 

Corollary 3.23 Let C be an [n, m] code with dual covering radius three. Then the weights 
w =/: 0 in code C satisfy 

w ( n + 1 - w? 2: 2m or w 2: m. 

Remark 3.24 Notice that Property 1 of Lemma 3.22 is weaker than Properties 2 and 3 
of the same lemma, since it is implied by both Property 2 and Property 3, using the sphere 
covering bound (3.1). 

As an application of Lemma 3.22 we derive five bounds on l(m, r), in inci'easing level of 
difficulty. The first two bounds were already established by others, but are included here 
to give a simpler proof. The last three bounds are new. 

Bound 3.25 l(13, 3) 2: 38. 

Proof: Suppose Cis a [37, 13] code with dual covering radius three. From Corollary 3.23 
we infer that C has minimum distance d(C) 2: 13: But d[37, 13] = 12, so evidently code C 
does not exist. Hence l(13, 3) 2: 38. 0 

Remark 3.26 In a recent paper Zhang and Lo [90] proved the same bound with entirely 
different methods. However, unlike their proof, our proof is completely elementary. 

Bound 3.27 l(9, 3) 2: 16. 

Proof: Suppose C is a [15, 9] code with dual covering radius three. Corollary 3.23 implies 
that d(C) 2: 4. Since d[15, 9] = 4, a codeword of weight four actually occurs. The maximal 
subcode V of C having zeros on the support of a fixed codeword of weight four has dimension 
dim(V) 2: 5. Property 1 of Lemma 3.22 imposes a restrietion on the nonzero weights a of 
code V , viz. 4a(12- a) 2: 128, i.e. 4 ::::; a ::::; 8. lf weight five occurs, then Property 2 of the 
samelemma implies that K(6, 1)::::; 4 x 5 x 2-1 = 10. But K(6, 1) = 12, so weight five does 
not occur. Similarly, if weight six (seven] occurs, then we have 1<(5, 1) ::::; 6 [K(4 , 1)::::; 3]. 
Since these bounds conflict with the values 1<(4, 1) = 4, resp. 1<(5, 1) = 7, code V is an 
[11, 2: 5; {0, 4, 8}] code. Now V+ {0, 1} is a self-dual [12, 6; {0, 4, 8, 12}] code. But even 
self-dual codes of length twelve do not exist [64, p. 626]. Evidently code C does not exist. 
Hence l(9, 3) ~ 16. 0 
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Remark 3.28 This result was originally proved by Simonis [72]. His proof involved a 
manipulation of the MacWilliams identities, which resulted in a contradiction. Again, our 
proof is completely elementary. Later on we will improve this bound further and show that 
l(9, 3) 2: 17 (Bound 3.31). 

Bound 3.29 l(12, 3) 2: 31. 

Proof: Suppose Cis a [30, 12] code with dual covering radius three. Corollary 3.23 implies 
that d(C) 2: 8. Let Vw be the maximal subcode of C having zeros on the support of a fixed 
codeword of weight w. 
If a codeword of weight eight occurs, then Property 3 of Lemma 3.22 implies that the 
nonzero weights a of code V 8 satisfy the inequality a(23- a) 2: 23 x K(7, 1) = 128, i.e. 
10 $ a $ 13. If Va contains a codeword of weight ten, then Property 2 of Lemma 3.22 gives 
K(12, 1) $ 8 x 10 x 22 = 320, in conflict with the lower bound K(12, 1) 2: r212 /121 = 342. 
Hence code Va does not contain codewords of weight ten. Similarly, if weight twelve 
occurs, then we have K(lO, 1) $ 8 x 12 = 96, in conflict with the lower bound K(lO, 1) 2: 
r210 /lOl = 103. lt follows that every nonzero codeword in Va has odd weight . This is 
clearly impossible, since Va has dimension at least four. Hence d(C) 2: 9. 
If a codeword of weight nine occurs, then Property 3 of Lemma 3.22 yields the inequality 
a(22- a) 2: 22 x K(8, 1) = 128 for the nonzero weights a in code V 9 , a contradiction. 
Therefore code C must have minimum distance d(C) = 10, since 9 $ d[30, 12] $ 10. 
From Property 3 of Lemma 3.22 we infer that the nonzero weights a in code V 10 satisfy 
a(21-a) 2: 2xK(9, 1) 2: 2x54 = 108, i.e. 9$ a$ 12. Again, ifweight ten [twelve] occurs, 
then Property 2 of Lemma 3.22 yields K(10, 1) $ 100, resp. K(8, 1) $ 10 x 12 x 2-2 = 30. 
Since these bounds conflict with the lower bounds K(lO, 1) 2: 103, resp. K(8, 1) = 32, 
code V 10 only has odd nonzero weights. This is impossible, since code V 10 has dimension 
at least two. Evidently code C does not exist. Hence l(l2; 3) 2: 31. D 

Bound 3.30 l(10, 3) 2: 21. 

Proof: Suppose C is a [20, 10] code with dual covering radius three. From Corollary 3.23 
we infer that d(C) 2: 4. Let Vw be the maximal subcode of C having zeros on the support 
of a fixed codeword of weight w . 
If a codeword of weight four occurs, then Property 3 of Lemma 3.22 implies that the, 
nonzero weights a of code V4 satisfy a(17- a) 2: 25 x K(3, 1) = 64, i.e. 6 $ a $ 11. 
Therefore code V4 is a [16, 2: 6, 2: 6] code. Since d[l6, 6] = 6, code V 4 has a codeword 
of weight six. But then Property 2 of Lemma 3.22 gives K(10, 1) $ 4 x 6 x 22 = 96, in 
conflict with the lower bound K(lO, 1) 2: r210 /101 = 103. Hence d(C) 2: 5. 
If a codeword of weight five occurs, then Property 3 of Lemma 3.22 yields the inequality 
a(16-a) 2: 24 x K(4,1) = 64 for the nonzero weights a in code V 5 , soa= 8. Evidently V 5 

is a one-weight code with distance d = 8. But code V 5 has dimeosion k 2: 5, so it does not 
satisfy the divisibility constraint 2k-l1 d that holds for one-weight codes ( cf. Lemma 3.2). 
Therefore d(C) 2: 6 and, since d[20, 10] = 6, a codeword of weight six actually occurs. 
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From Property 3 of Lemma 3.22 we infer that the nonzero weights a of code V 6 satisfy 
a(15- a) ;::: 23 x K(5, 1) = 56, so a = 7 or a = 8. Hence V 6 is a [15, 4, 8] code, which 
is the (unique) simplex code with dual distance three. Therefore all columns of matrix D 
are distinct and nonzero, i.e. code V 6 also has dual distance three. Now put generator 
matrix H for code C into the standard form (cf. page 47) with the bottorn row of weight 

six. Since code V 6 has dimeosion four and dual distance three, at most 6 + (~) = 26 < 32 

syndromes with template (0000, *• 1) are covered. Evidently code C does not exist. Hence 
l(IO, 3) 2: 21. o 

All the nonexistence proofs treated so far are based upon an application of Lemma 3.22. 
For the last bound, l(9, 3) ;::: 17, this is not enough. Besides the structure of code V, we 
also have to take into account the structure of matrix E that appears as a submatrix in 
generator matrix H in the standard form (cf. page 47). The proof demonstrates how far 
one can go in analyzing linear covering codes, making use of the tools developed so far. 

Bound 3.31 l(9, 3) ;::: 17. 

Proof: Suppose C is a [16, 9] code with dual covering radius three. 
By Corollary 3.23 we have w ;::: 9 or w(17- w)2 ;::: 512, i.e. d(C) ;::: 3. If a codeword 
of weight three occurs, then the (maximal) subcode having zeros on the support of this 
codeword has nonzero weights a satisfying a(14 - a) ;::: K(2, 1) x 25 = 64, according to 
Property 3 of Lemma 3.22. This is clearly impossible, hence d(C) ;::: 4. Since d[16, 9] = 4, 
we have in fact equality. Now put generator matrix H of code C into the standard form, 
with the bottorn row of weight four. We will prove that notall the syndromes with template 
(*, 1) are covered. In themselves, the restrictions imposed by Lemma 3.22 on the structure 
of code V that is generated by submatrix D of generator matrix H are not strong enough 
to prove nonexistence; therefore we will first derive some more detailed restrictions that 
hold for code V. These more detailed restrictions will enable us to prove that code C 
does not exist. We show that matrix D has r;:mk five and that the structure of code V 
can be (partially) determined. Furthermore, we show that it is possible to obtain some 
information on matrix E. We follow the same approach as in the proof of Bound 3.19 
(l(6, 2) = 13). 

(i) Each set of ( four) columns induced by a èodeword of weight four is independent. 
Matrix D has rank at least five. In fact equality holds. To see this, suppose matrix D has 
rank k ;::: 6. For all x E JF~ \ {0} the syndromes with template (x, *• 1) should be covered, 
so all nonzero veetors in JF~ should be the sum of one or two columns of matrix D. This 
implies that V is a [12,;::: 6] code with dual covering radius two, in conflict with the bound 
l(6, 2) = 13 (Bound 3.19). Therefore matrix D has rank five. This result liolds, no matter 
which codeword of weight four is chosen as the bottorn row of generator matrix H. Since 
the total rank of matrix H is nine, the claim follows. 
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We just proved that the submatrix A of generator matrix H is an invertible matrix, so we 
may assume w.l.o.g. that A is the identity matrix, i.e. A= h. 

( ii) The structure of matrix E can be (partially) determined. 
For all x E JF~ define S(x) := {w& I wDT =x and wt(w) $ 2}. All eight syndromes 
with template (x,*, 1) should be the sum of at most three columns of matrix H. By 
Definition 3.3 this implies that for all x E JF~ \ {0} the set S(x) 1-covers JF~ using matrix 
A= h, i.e. S(x) Ç JF~ has covering radius one. In particular IS(x)l ~ K(3, 1) = 2 and if 
S(x) has cardinality two, then S(x) is a perfect (3, 2, 3) code. 
This simple observation turns out to be very useful: if S(x) = {w1Er, w2Er}, then matrix 
E satisfies the linear equation (w1 + w 2 )ET = 1. In this way the structure of matrix E 
can be partially determined. 

( iii) The structure of code V can be (partially) determined. 
We show that the restrictions imposed upon the weights occurring in code V and those 
imposed upon the intersections between different codeworcis of V are the same as the 
restrictions imposed upon the [12, 6] code considered in the proof of Bound 3.19. 
Code V is a [12, 5] code, since matrix D has rank five, cf. (i). Since the bottorn row 
of generator matrix H has ones outside the columns of matrix D, we may apply the 
inversion property (Lemma 3.8) to matrix D. From Property 1 of Lemma 3.22 we infer 
that the nonzero weights a occurring in code V satisfy 4a(13- a) ~ 128, i.e. 4 s; a $ 9. 
Since d[12, 5] = 4, a codeword of weight four actually occurs and we may assume, by the 
inversion property, that V contains a codeword of weight nine. Now put generator matrix 
Dof code V into the standard form, cf. Section 3.3.1, page 41, with the bottorn row of 
weight nine. The structure of matrix D largely depends on intersection relations, similar 
to Lemma 3.16, between this codeword of weight nine and all other nonzero codeworcis of 
code V. Each nonzero syndrome of Vl. is the sum of at most two columns of matrix D 
in at least two ways (in short: is covered twice), since S(x) has cardinality at least two 
for all x E JF~ \ {0}, cf. (ii) . Combining Lemma 3.16 andRemark 3.17 following it, we 
get the following (strengthened) intersection relation between the codeword of weight nine 
occurring in V and all other nonzero codeworcis in this code: 

x = 4 for all a =f:. 2, and 2 $ x $ 4 for a = 2, (3.6) 

where a and x are defined as in Lemma 3.16. We denote the constituting submatrices of 
matrix D by Do and D 1 (rather than by A0 and A1). The structure of matrix D depends 
on the intersection relations (3.6) and on the rank of matrix D 0 • The rank of the 4 x 3 
matrix Do satisfies 1 s; rk(D0 ) s; 3. The upper bound follows from the format of the 
matrix, the lower bound from the relations of (3.6). To see this, suppose D0 is the all-zero 
matrix. Then code V 1 +{0, 1} contains a four-dimensionallinear one-weight subcode with 
distance four, which contradiets Lemma 3.2. 

Now we are ready to prove the nonexistence of code C. We distinguish four cases, depending 
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on the rank of matrix Do and on the presence of the all-one vector in code 'D0 . The proof 
involves, in increasing level of difficulty, the following cases: 

Case 1: rk(D0 )::::: 1; 
Case 2: rk(D0 ) = 3; 
Case 3a: rk(D0 ) = 2 and code 'Do contains the all-one vector; 
Case 3b: rk(D0 ) = 2 and code 'Do does not contain the all-one vector. 

In each case we prove that either (i) is violated or d(C) < 4. In the proof syndromes are 
always syndromes of code Vl.. Each of these syndromes is covered iff it is the sum of at 
most two columns of matrix D. 

Case 1: rk(D0 ) = 1. 

The largest linear one-weight code with distance four has dimension three. Using the 
relations of (3.6), we infer that matrix Do generates a [3, 1, 2] code; hence matrix D has 
w.l.o.g. the following form: 

1 0 
1 
1 1 
1 1 
1 1 

x 
1 1 

1 1 
1 1 
1 1 1 1 1 

The submatrix below x generates the [7, 4, 3] Hamming code. The Hamming code is a 
perfect code and has a 2-transitive automorphism group, so we may assume w.l.o.g. that 
wt(x) ~ 1, i.e. x= 0 or x= (1000000), if necessary after applying suitable row operations 
on matrix D. 
lf x= 0, then we have y = (11), siuce code V has minimum distance four. Now matrix D 
is completely determined. The sets S((1, 111, 1)) and S((1, 111, 0)) both have cardinality 
two, hence both sets are perfect (3, 2, 3) codes, cf. (ii) . By definition of S(·), the veetors 
w 1 :;= (110, 0000000, 00) and w 2 = (000, 0000000, 11) satisfy w 1ET = w 2& = I. Now 
w 1 + w 2 is contained in both code V and code Vl. n fl. . Thus we have found a codeword of 
weight four in C that induces a set of dependent columns in matrix H, in conflict with (i). 
If x= (1000000), then the syndrome (1, 111,0) is covered twice only if y = (00). Since 
V has minimum distance four, this is not possible. 

Case 2: rk(Do) = 3. 

Using the relations of (3.6), we infer that matrix D can be put into the Jollowing form: 

D = (~l 1 ~X -y IJ· 
1 1 1 1 
1 1 1 1 1 
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Let X:= (xf, ... ,xr). All syndromes with template (*,11) are covered exactly twice. 
1t can easily be seen that this implies that matrix X contains two (possibly the same) 
translates of the repetition code { 0, 1} as columns. Therefore we may assume w.l.o.g. that 
x1 + x2 = x3 + x4 = 1 and that every row of X bas even weight. The sets S((x" 11)) 
and S((x2, 11)) have cardinality two, hence both sets are perfect (3, 2, 3) codes, cf. (ii) . 
We claim that w = (000,1111,00000) satisfies wET= 0. If so, wis contained in both 
code V and code V.J.. n f.J..; thus we have found a codeword of weight four in C that 
induces a set of dependent columns in matrix H, in conflict with (i) . To prove the 
claim, weneed to distinguish between the (essentially) two possible forms of matrix X, i.e. 
(x1, •.• ,x4 ) = (0,1,1,0) or (x1, .•• ,~) = (000,111,110,001). In the first case we find, 
by definition of S(·), that the veetors w 1 = (000, 1001, 00000) and w2 = (000, 0110, 00000) 
satisfy w 1ET = w 2ET = 1; in the other case we find that w 1 = (001, 1001, 00000) and 
w2 = (001, 0110, 00000) satisfy w 1 ET = w 2ET = 1. In both cases the vector w = w 1 + w2 
satisfies wET = 0, as claimed. 

Case 3: rk(D0 ) = 2. 

Matrix Do generates a [3, 2] code, hence V 0 bas minimum distance one or two. In the first 
case we may assume, by the inversion property, that V 0 contains the all-one vector. In the 
other case V 0 is the [3, 2, 2] even weight code. We consider both cases separately. 

Case 3a: Code V 0 cohtains the all-one vector. 

Using the relations of (3.6) and the structure of matrix D0 , we can put matrix D into the 
following form: 

( ~11 x y J 
D = ----+--::-~ --::~-1::---:-1--+-:1:---:-1--::-::---:-1 ·. 

1 1 1 1 1 1 1 1 

Let X:= (xi, . .. , xr). All syndromes with template (*, il) are covered exactly twice. It 
can easily be seen that this implies that x1 + x2 = x3 + x4 = 1 and that every row of X bas 
even weight. The sets S((x" 111)) and S((x3 , 011)) have cardinality two, hence both sets 
are perfect (3, 2, 3) codes, cf. ( ii). By definition of S( · ), the veetors w 1 = (100, 1100, 00000) 
and w2 = (100, 0011 , 00000) satisfy w 1 ET = w 2 ET = 1. Now w 1 + w 2 is contained in 
both code V and code V.J.. n f.J.. . Thus we have found a codeword of weight four in C that 
induces a set of dependent columns in matrix H, in conflict with (i). 

Case 3b: Code V 0 is the even weight code. 
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Using the relations of (3.6) and the structure of matrix D 0 , we can put matrix D into the 
following form: 

1 1 x, x2 x3 x4 
1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 1 1 1 1 1 

) 
Notice that all syndromes with templates (*, 11, 1), (*, 01, 1), and (*, 10, 1) are covered 
exactly twice. We will see that matrix D can be completely determined. Using the structure 
of matrix D, we then derive a contradiction. First wedetermine the structure of matrices 
X 1 , X 2 , and X3 . Using this, matrix D can be completely determined. 

Denote the sum of the columns of a binary matrix X by I: X. 
Let a := L;X1, b := L;X2 , and c := I:;X3 . We sh•ow that {O,a,b,c} = JF~. First we 
prove that a, b, and c are distinct; then we prove that they are all nonzero. 
If a = b, then we claim that the vector w = (000, 1111, 00000) satisfies wET = 0. If 
so, wis contained in both code V and code Vl. n t:l., since every row of matrix (XdX2 ) 

has even weight; thus we have found a codeword of weight four in C that induces a set of 
dependent columns in matrix H, in conflict witli (i). By symmetry the veetors a, b, c E JF~ 
are all distinct then. To prove the claim, first note that w.l.o.g. x, = x2 =(OT, aT) . The 
sets S((OO, 11, 1)) and S(((OO, 01, 1)) have cardinality two, hence both sets are perfect 
(3,2,3) codes, cf. (ii). By definition of S(·), we find that for á = (10), the veetors 
w 1 = (001, 11, 00, 00000) and w2 = (001, 00, 11, 00000) satisfy w 1ET = w 2ET = 1, so 
w = w 1 + w2 satisfies wET= 0. The other possible values fora give the same result and 
the claim follows. 
If a= 0, then we may assume w.l.o.g. that X1 = 0. Since b =/; c and since both veetors are 
nonzero, we have {X2}+{X3} = JF~. Consequently, the syndromes (z, 11, 0) with z ~ {X4} 

are covered only once. Since all nonzero syndromes of Vl. should be covered twice, this is 
not possible, cf. (ii). Therefore a=/; 0 and by symmetry we obtain {O,a,b,c} = JF~. 
By adding a suitable linear combination of the last three rows of D to the first two rows, 
we obtain 

We now show that matrix X4 contains three different columns. To see this, first note that 
{X;}+ {Xi} = JF~ for all i=/; j,1 S i,j S 3. Now suppose thatX4 = (x,x,y) . We 
distinguish two cases. If x =/; y, then an inspeetion of matrix D reveals that all syndromes 
(z, x+ y, 0) with z =/;x, y are covered only once. In the other case all syndromes (z, w, 0) 
with w =/; 0 and z =/; x, w +x are covered only once. Since all nonzero syndromes of Vl. 
should be covered at least twice, this is not possible, cf. ( ii) . Therefore all columns of 
matrix x4 are distinct. 
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lrrespective of the partienlar choices left for matrix X4 , matrix D can be put into the 
following form: 

1 1 1 1 1 
1 1 1 1 1 

1 1 1 1 
1 1 1 1 
1 1 1 1 1 1 1 1 1 

) 
Using the structure of matrix D, we now show that our original code C contains a nonzero 
codeword of weight at most two. Since code C has minimum distance four, wethen obtain 
a contradiction and the proof is finished. 
Every syndrome x=/; 0 that is covered exactly twice induces a set S(x) = {w1Er, w2Er}, 
which is a perfect (3, 2, 3) code, cf. (ii). In this way we obtain an equation that is satisfied 
by matrix E, viz. wET= 1 with w •= w 1 + w2. 

syndrome x( i) = w~'1 DT = w~'1 DT w(i) = w~'1 + w~'1 with 

i x(il w~·J w~•J w(i)ET = 1 

1 (11111) (100,10,00,00,000) (000,01,00,00,000) (100,11,00,00,000) 
2 (01011) (010,00,10,00,000) (000,00,01 ,00,000) (010,00,11,00,000) 
3 (10101) (001,00,00, 10,000) (000,00,00,01,000) (001,00,00,11 ,000) 
4 (11110) (000,01 ,00,00,1 00) (000,00,01 ,01 ,000) (000,01 ,01 ,01 ,100) 
5 (11010) (000,00,01 ,00,010) (000,01 ,00,10,000) (000,01,01 ,10,010) 
6 (11100) (000,00,00,01 ,001) (000,01 1 10,00,000) (000,01 ,1 0,01,001) 

Figure 3.2: How certain syndromes of code Vl. reveal information on matrix E. 

Figure 3.2 shows how we can obtain linear restrictions on matrix E from specific syndromes 
of code Vl.. Let W be the 6 x 12 matrix with as rows the veetors w(il from Figure 3.2. 
By construction matrix W has rank rk(W) = 6 and satisfies the equation 

Evidently code Vl. n êJ. has dimension at least five, hence code V + ê has dimension at 
most seven. But this is impossible: via elementary row operations on generator matrix H 
of our original code C we can now construct a nonzero codeword of weight at most two, in 
conflict with d(C) = 4. Therefore code C does not exist. Hence l(9, 3) ;:::: 17. D 

3.5 Appendix 

Proof of Bound 3.20 (l(8, 2) ;:::: 25): 
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Suppose C is a [24, 8] code with dual covering radius two. From Property 1 of Lemma 3.11 
we infer that w(25- w) ~ 128, i.e. 8 S w S 17. Since d[24, 8] = 8, the minimum distance 
of codeCis eight and we may assume, by Property 3 of Lemma 3.11, that a codeword of 
weight seventeen occurs. Now put generator matrix H of code C into the standard form 
(cf. page 41), with the bottorn row of weight seventeen. Lemma 3.16 relates the weights 
a occurring in code Ao and the corresponding weights x (with x S 8) occurring in code 
At+ {0,1} via 

x= 8 for 
7 S x S 8 for 
4 S x S 8 for 

a= 0, 1, 2,6, 7; 
a= 3,5; 
a=4. 

(3.7) 

The structure of generator matrix H largely depends on these relations and on the structure 
of matrix A0 . We distinguish between the possible ranks of matrix A0 . In the actual 
nonexistence proof for C we will use the fact that 

A~ is a subcode of the [7,4, 3] Hamming code. (3.8) 

Equation (3.8) is obvious when matrix A0 has rank rk(Ao) = 7, since then this matrix 
spans the vector space /F~. If rk(A0 ) < 7, then (3.8) can be seen as follows. Consider 
the case rk(A0 ) = 6. Using the relations of (3.7), we can put generator matrix H into the 
following form: 

( 

Aó 
H = 0 0 

0 0 
1 
1 

x 

1 0 
1 1 

y 

: ). whoreX ;, a 6 x 8 matrix. 

All the syndromes with template (*, 11) should be covered, hence by Definition 3.3 the 
columns of matrix X I-cover IF~ using the 6 x 7 matrix A0. From Lemma 3.4 we infer that 
the code P := {x E /F~ I A0xr E {X}} has covering radius one. Since P has cardinality 
sixteen, this code is a perfect (7, 16, 3) code, i.e. a coset of the [7, 4, 3] Hamming code. 
Code P consists of a number of cosets of ~, hence (3.8) follows. A simHar argument 
proves (3.8) for matrices A0 of rank rk(A0) < 6. D 

For not.ational convenience we define matrix AG2(m) as a matrix with as columns all 
the veetors of JF'.{'. The result of puncturing this matrix on the zero-posit.ion is denoted 
by PG2(m..,.. 1). The latter matrix generates the simplex code with distance 2m- I. In 
the sequel we will not use the particular order of the columns of these matrices, so the 
ambiguity in the definitions does not cause any problems. 

Now we are ready to prove the nonexistence of code C. We distinguish seven cases, de­
pending on the rank of matrix A0 and on the presence of the all-one vector in code Ao. 
The proof involves, in increasing level of difficulty, the following cases: 
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Case 1: 
Case 2a: 
Case 2b: 
Case 3: 
Case 4: 
Case 5a: 
Case 5b: 

rk(A0) = 7; 
rk(A0) = 6 and code .Ao contains the all-one vector; 
rk(A0) = 6 and code .Ao does not contain the all-one vector; 
rk(Ao) = 3; 
rk(A0) = 4; 
rk(A0) = 5 and code .Ao contains the all-one vector; 
rk(A0) = 5 and code .Ao does not contain the all-one vector. 

We will always assume that generator matrix H has distinct columns, cf. Lemma 3.10. 

Case 1: rk(A0 ) = 7. 

We may assume that A0 = h and that every row of matrix A1 has even weight (apply 
suitable row operations on the generator matrix). From the relations of (3.7) we infer that 
every row of matrix A1 , and every sum of two different 1 ows of the same matrix, has weight 
eight. In particular, the binary inner product of any two rows of A1 is zero. It follows 
that allwordsof code A 1 have weights divisible by four, so A 1 is a [17, 7; {0, 4,8, 12}] code. 
Consequently, the relations of (3.7) between the weights a occurring in code Ao and the 
corresponding weights x in code A 1 can be sharpened to 

x=8 forall a:;f4; 
x= 4,8,12 for a= 4. 

(3.9) 

(Notice that we do not restriet to x ~ 8 here.) 
Generator matrix Hof code C can be put into the following form: 

0 

x y 
H= 0 , where X is a 6 x 8 matrix. 

0 . . . 0 1 1 1 0 . . . 0 
1 1 1 1 

From the relations of (3.9) we infer that every row of matrix Y, and every sum of two 
different rows of the same matrix, has weight four. In particular, the binary inner product 
of any two rows of Y is zero. It follows that all words in the linear span of matrix Y 
have weights divisible by four. Therefore, all nonzero words in the linear span of matrix 
Y have weights four or eight. In fact weight eight cannot occur. To see this, suppose 
wt(aY) = 8 forsome a E JF~. Code C contains both the codeword (a, 0, aX, aY) and the 
codeword (a, 1, 1 + aX, aY). Using the relations of (3.9), we find that aX = 0 or aX = 1, 
i.e. there exists a codeword of weight sixteen in code A 1 . This contradiets the relations of 
(3.9), however. Therefore matrix Y generates a one-weight code with distance four, as does 
matrix X , using similar arguments. The largest linear one-weight code with distance four 
has dimeosion three, cf. Lemma 3.2, hence matrices X and Y both generate [9,3; {0,4}] 
codes. From Lemma 3.2 we infer that matrix Y has two zero-columns. Since notall columns 
of generator matrixH are different, this contradiets our assumptions (cf. Lemma 3.10). 
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Case 2 rk(A0 ) = 6. 

Matrix A0 generates a [7, 6] code, hence Ao has minimum distance one or two. In the 
first case we may assume, by the inversion property, that Ao contains the all-one vector. 
From (3.8) we infer that A~ is a subcode of the [7, 4, 3] Hamming code, i.e. Ao contains 
the [7, 3, 4] simplex code as a subcode. Since code Ao also contains the all-one vector, it 
contains the [7, 4, 3] Hamming code as a subcode. In the other case Ao is the [7, 6, 2] even 
weight code. We consider both cases separately. 

Case 2a: Code Ao contains the Hamming code. 

The structure of generator matrix H for code C largely depends on the relations of (3. 7) 
and on the structure of code A0 . First we derive some more detailed constraints, however. 
From (3.7) we infer that the generator matrix H of code C can be put into the form 

* 

J , whoc' X " a 6 x 8 =""'· 
x y 

* 
0 0 1 1 0 0 

1 1 1 1 

We prove that matrix X generates w.l.o.g. a one-weight code with distance four . 

From the relations of (3.7) we infer that every row of matrix X has weight four . Every 
sum of two different rows of this matrix has weight four as well. This also follows from the 
relations of (3.7), with some effort: let (a, x, y) be a codeword of C with a E JF~, x E JJ1, 
and y E JF~. Notice that (a, 1 +x, y) is contained in code C as well. If wt(a) = 2, then 
wt(x) = 4 follows from the relations of (3.7). lf wt(a) = 3, then the relations of (3.7) 
imply the inequalities 7 :5 wt(x) + wt(y) :5 10 and 7 :5 (8 - wt(x)) + wt(y) :5 10, i.e. 
3 :5 wt(x) :5 5. Hence the sum of two different rows of matrix X has weight four, since 
every row of matrix X has even weight. Notice that the inner product of two different rows 
of X is zero. Therefore all weights in the linear span of matrix X are divisible by four and 
we may assume that X generates a one-weight code with distance four. The largest linear 
one-weight code with distance four has dimeosion three, so we may assume that matrix X 
has rank at most three. 

Using the structure of matrices A0 and X and the relations of (3.7), we can put generator 
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matrix H of code C into the following form: 

1 1 1 1 
1 1 1 1 0 Y' 
1 1 1 1 

H= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Notice that we used the fact that the Hamming code is a perfect code and has a two­
transitive automorphism group. 
All eight syndromes with template (*, 0110, 0) should be covered. An inspeetion of ma­
trix H reveals that at most seven syndromes with this template are actually covered, a 
contradiction. 

Case 2b: Code Ao is the even weight code. 

We may assume that A0 = (h I lT) and that every row of matrix A1 has even weight. 
Similar to Case 1 (rk(A0 ) = 7), we find that A 1 is a 117, 7; {0, 4,8, 12}] code and that the 
relations of (3.9) hold. From (3.9) we infer that generator matrix H of code C can be put 
into the form 

1 

16 x y 
H= 1 , where X is a 6 x 8 matrix. 

0 ... 0 0 1 1 0 0 
1 1 1 1 I 

As in Case 1, all weights in the linear span of matrices X and Y are divisible by four. 
The largest linear one-weight code with distante four has dimension three, so matrices X 
and Y have rank at most four. We assumed that all columns of generator matrix H are 
different (cf. Lemma 3.10). From Lemma 3.2 we infer that matrix Y, and herree matrix 
A1, contains the zero-column exactly once. Puncturing matrix A1 on this zero-position 
yields a code with dual distance d' ;:::: 3. Since the number of nonzero weights in code 
A1 is three and d' ;:::: 3, we can compute the weight enumerator of code A1 using the 
MacWilliams identities or Corollary 1.7. This results in the weight enumerator W(z) = 
1 + 13z4 + 99z8 + 15z12

. In particular, the number of codewords of weight eight in code 
A 1 is 99. Since 99 > 2 x (64- G)) = 58, there exists a codeword (a, x) E C with x E A 1, 

wt(x) = 8, and wt(a) = 4. We may assume w.l.o.g. that a= (0001111). 



3.5 Appendix 61 

Using this, the relations of (3.9) and the structure of matrix X , we can put generator 
matrix H of code C into the following form: 

1 1 1 1 
1 1 1 1 0 Y' 

1 1 1 1 

H= 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

It is not immediately evident that the upper left submatrix of H indeed generates a [7, 3, 4] 
code. This follows indirectly from the relations of (3.9): matrix Y' cannot contain any 
codeword of weight eight, since otherwise there would be a codeword of weight sixteen in 
code Ah in conflict with the relations of (3.9) . Hence Y' generates a [9,3; {0,4}] code. 
Using the relations of (3.9) once again, we find that the upper left submatrix of generator 
matrix H in deed generates the [7, 3, 4] simplex code. 
Matrix Y' := (y1, . .. , y 9 ) generates a [9 , 3; {0,4}] code. From Lemma 3.2 we infer that 
Y' has two zero-columns. The nonzero binary triples occur exactly once as columns of 
matrix Y'. Since all syndromes with template (*, 0000, 0) should be covered , we have 
y 8 + y 9 = 1. Similarly, consiclering all syndromes with template (*, OllO, 0) yields the set 
equation {Oll, 100, 000} U {YJ + y7, Y2 + Ys, Y2 + yg,Y3 + y5, Y4 + Y6} = .IF~. Since these 
sets have the same cardinality and no element occurs more than once, the summation over 
the elements of either set should yield the same result. Matrix Y' contains all nonzero 
binary triples exactly once, hence y 2 = (ll1). The same exercise for all syndromes with 
template (*, 1010,0) yields y3 = (ll1), so y 2 = y 3. Since matrix Y' contains all nonzero 
triples exactly once, we obtain a contradiction. 

Case 3: rk{A0 ) = 3. 

From (3.8) and the rank of matrix A0 we infer that A~ is a subcode of the [7, 4, 3] Hamming 
code of dimeosion four. Therefore matrix A0 generates the dual of the Hamming code, i.e. 
the [7,3,4] simplex code. Using this and the relations of (3.7), we can put generator matrix 
H of code C into the following form: 

' x y 

H= 

11 1111, 
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Observe that all syndromes with template (*, 1) are covered. We now show that matrix X 
generates a code with minimum distance at least five. Suppose the bottorn row of matrix 
X bas on es in the posi ti ons corresponding to the different veetors {x; I 1 :$ i :$ s} in 
the 4 x 15 matrix PG2(3) below X. Notice that the relations of (3.7) imply that s ~ 2. 
We distinguish two cases. If the bottorn row of matrix Y bas weight two, then the four 
syndromes with template (*, 1, x~. 0) can only be covered if s 2: 5. If the bottorn row 
of matrix Y bas weight zero or one, then s ~ 5 also holds, since otherwise at most three 
syndromes with template (*, 1, x 1 +x2 , 0) are covered. We see that in both cases the bottorn 
row of matrix X has weight at least five. Since we did not use the structure of the upper 
left submatrix of H, in fact X generates a linear code with distance at least five. Moreover, 
all codewords in the !inear span of X have distance at least five to the (punctured) Reed­
Muller code below X . Hence the submatrix induced by the fifteen column positions of X 
(i.e. columns 8 to 22) generates a linear (15, 28 , 5) code. But there exists only one code 
with these parameters, viz. the nonlinear Preparata code, a contradiction. 

Case 4: rk(Ao) = 4. 

Matrix Ao generates a [7, 4] code, hence A 0 bas minimum distance one, two, or three. Using 
the inversion property (Lemma 3.8), we may assume that code Ao contains a codeword 
a E JF~ of weight two or seven. From (3.8) we infer that A~ is a subcode of the [7, 4, 3] 
Hamming code, hence Ao contains the 2~transitive [7, 3, 4] simplex code as a subcode. 
Using this and the relations of (3.7), we infer that generator matrix H of code C can be 
put into the following form: 

PG2(2) x y 

H= 
a 1 ... 1 0 ... 0 

AG2(3) PG2(2) 

1 ... 1 1 . .. 1 1 1 

We now show that matrix X generates a code with minimum distance at least five. Suppose 
the bottorn row of matrix X bas on es in the positions corresponding to the different veetors 
{x; 11 :$i :$ s} in the 4 x 15 matrix PG2 (3) directly below X . We distinguish two cases. 
If the bottorn row of matrix Y has weight two, then s ~ 2 and we may assume that 
x 1 =/= (1000) . Therefore the four templates (*, 1, x 1, 0) can only be covered if s ~ 5. If the 
bottorn row of matrix Y bas weight zero or one, then s ~ 3 and we may assume w.l.o.g. 
that x 1 + x2 =/= (1000). Now the four syndromes with template (*, 1, x 1 + x2 , 0) can only 
be covered if s ~ 5. We see that in both cases the bottorn row of matrix X has weight at 
least five. Since we did not use the structure of the upper left submatrix of H, in fact X 
generates a linear code with distance at least five. Moreover, all codewords in the linear 
span of X have distance at least five to the (punctured) Reed-Muller code below X. Hence 
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the submatrix induced by the fifteen column positions of X (i.e. columns 8 to 22) generates 
a linear (15, 28, 5) code. But there exists only one code with these parameters, viz. the 
nonlinear Preparata code, a contradiction. 

Case 5: rk(A0 ) = 5. 

From (3.8) we infer that A~ is a subcode of the [7, 4, 3] Hamming code, hence Ao contains 
the 2-transitive [7, 3, 4] simplex code as a subcode. Matrix A0 generates a [7, 5] code, hence 
Ao has minimum distance one or two. By the inversion property (Lemma 3.8) we may 
assume that code Ao either contains a codeword of weight seven or has minimum distance 
two. We consider both cases separately. 

Case 5a: Code Ao contains the all-one vector. 

Code Ao contains the 2-transitive [7, 3, 4] simplex code as a subcode and contains the all­
one vector, hence it contains the perfect Hamming code as a subcode. Using this and the 
relations of (3.7), we ca.n put generator matrixHof code C into the following form: 

1 1 1 1 
1 1 1 1 XI x2 X3 x4 
1 1 1 1 

H= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

We will show that this matrix can be transformed toa parity check matrix of an [18, 11]2 
code. Since l(7, 2) = 19, we then obtain a contradiction. 
Let X 1 := (a, b, c, d). All syndromes with template (*, 1111, 1) should be covered, so 
{a,d + 1} U (b + (JF~ \ {0, 1})) = JF~. Since these sets have the same cardinality and 
no element occurs more than once, the summation over the elements of either set should 
yield the same result, hence a = d. The same argument for the syndromes with template 
(*, 0111 , 1) yields b = c. By symmetry, this result holds for matrices X 2 and X 3 as well. 
Hence the firstjlast, resp. second/third, column of each of the matrices X 1, X 2 , X 3 are 
equal. Now by adding the fourth row of matrix H to the fifth one and by subsequently 
deleting the fourth row and double columns in the resulting matrix, we get a 7 x 18 parity 
check matrix of a linear code with covering radius two. Since l(7, 2) = 19 (Bound 3.13), 
this is not possible. 

Case 5b: Code A0 has minimum distance two. 
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Since code .Ao has minimum distance two, its dual code 4 does not contain a zero-position. 
Using this and (3.8), i.e. 4 is a subcode of the [7, 4, 3] Hamming code, we infer that Ao 
is uniquely determined and has parity check matrix 

At= (-1 ___ 1--fl--"~----:---::-~ ) . 

In particular, all codeworcis of A0 have even weight. 
From the relations of (3. 7) and the form of matrix A~ we infer that generator matrix H 
of code C can be put into the following form: 

z x y 

H= 
1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 
1 0 1 0 0 0 0 1 1 1 1 1 1 1 1 

1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Let (x,y) be a word in the linear span of matrix (XIY) with y E JF~ and wt(y) = 1. We 
will prove that this situation never occurs. Since this implies that the last two columns of 
generator matrix H are equal, we then obtain a contradiction, using Lemma 3.10. 

By n•(1,4) we denote the punctured Reed-Muller code generated by the 5 x 15 matrix 
below X; its extended code will be denoted by 7<.(1, 4). 
The proof consists of three steps. In the first step we prove that d(x, n• (1, 4)) ::; 4. In 
the second step we show that there can beat most one such a word (x, y) with wt(y) = 1 
in the linear span of matrix (XIY). In the third and last step we show that such words 
cannot exist. 
Befare we give the actual proof, we mention some facts on Reed-Muller codes that will be 
used in the first step of the proof: the Reed-Muller code 7<.(1, 4) with parameters [16, 5, 8] 
has covering radius six. If d(u, 7<.(1, 4)) = 6, then u represents a bent function and all 
distances d(u, c) between u and some codeword c E 7<.(1, 4) are either six of ten. The 
punctured Reed-Muller code n•(1, 4) with parameters [15, 5, 7] has covering radius five. 
For details we refer to Remark 1.14 or to [64, p. 418]. 

Step 1 Let (x, y) be a word in the linear span of matrix (XIY) with y E JF~ and 
wt(y) = 1. Let (a, x, y) be the conesponding codeword of C. Suppose d(x, n·(1, 4)) ~ 5. 
The punctured Reed-Muller code n•(1, 4) with parameters [15, 5, 7] has covering radius five, 
hence we may assume that wt(x) = 5. Notice that adding a suitable linear combination of 
the bottorn five rows of generator matrix H is allowed, since this doesnotaffect wt(y). The 
vector (x, 1) has distance six tothe Reed-Muller code 7<.(1, 4), hence all distances between 
(x, 1) and th(:) codeworcis of 7<.(1, 4) are either six or ten. Using the relations of (3. 7), we 
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infer that the veetors a, a+ (1100000), a+ (1010000), and a+ (0110000) all have weights 
3, 4, or 5. Actually all these veetors have weight four, since they are all codewordsof code 
A0 and all weights in this code are even. The vector a has weight four, so the support of a 
intersects the supports of the veetors (1100000), (1010000), and (0110000) in exactly one 
position. It follows that a has exactly 1! ones in the first three positions, which is clearly 
impossible. Evidently d(x, R.*(1, 4)) ~ 4. 

Step 2 Suppose the bottorn row of matrix X has ones in the positions conesponding 
to the different veetors {xi I 1 ~ i ~ s} in the 4 x 15 matrix PG2 (3) directly below 
X and suppose the bottorn row of matrix Y has weight one. Notice that the relations 
of (3.7) imply that s ~ 3. If z E {xi + Xj I i =/= j} \ {(1000) , (0100), (1100)}, then 
the four syndromes with template (*, 1, z, 0) can only be covered if s ~ 5. Similarly, if 
z E {xi I 1 ::; i ~ s} \ {(1000), (0100), (1100)}, then the four syndromes with template 
( *• 1, z, 0) can only be covered if s ~ 4. It follows, that if the bottorn row of matrix X has 
weight three, then {O,xi,x2, x3 } = JF~ x {(00)} . Similarly, if the bottorn row of matrix 
X has weight four, then {x I, x 2 , x3 , x 4 } = JF~ x { (10)}, say. Si nee we did not use the 
structure of upper left submatrix Z, and since the bottorn row of matrix Y has weight 
one, in fact all veetors (x,y) in code AI+ {0, 1} with y E JF~ and wt(y) = 1 have this 
structure, whenever wt(x) :S: 4. 
Now suppose (x,y) and (x',y') are distinct wordsin the linear span of matrix (XIY) with 
wt(y) = wt(y') = 1. In Step 1 we proved that d(x, R.*(1 , 4)) ~ 4 and d(x', R.*(1,4)) ~ 4. 
Hence we may assume that both wt(x) and wt(x') are three or four . Now we use the 
analysis of the structure of veetors of weight three or four given above to obtain a nonzero 
codeword in A 1 + {0, 1} of weight less than four, in conflict with the relations of (3.7). 
Notice that it is enough to show that x+ x' E R.*(1, 4), because then AI + {0, 1} contains 
a nonzero codeword of weight at most two. It is easy to check that indeed x +x' E R.*(1, 4) 
for all possible choices of wt(x) and wt(x'), since their structure is known. If wt(x) = 
wt(x') = 3, then x= x'. If wt(x) = wt(x') = 4, then either x= x' or wt(x +x') = 8 and 
x+ x' E R.*(1 , 4). If wt(x) = 3 and wt(x') = 4, then 1 +x+ x' has weight eight and is 
contained in R.*(1, 4). 
Therefore, the linear span of matrix (XIY) contains at most one vector (x, y) with y E JF~ 
and wt(y) = 1. 

Step 3 Suppose (x,y) is a vector in the linear span of matrix (XIY) with y E JF~ and 
wt(y) = 1. Matrix Y is a 3 x 2 matrix and has rank at most two, hence there is a vector 
(x',y), with x =!= x', in the linear span of matrix (XIY). This contradiets the result of 
Step 2, however. Therefore there are no such vectors. D 
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Chapter 4 

Constructions for Covering Codes 

4.1 Introduetion 

In the previous two chapters we stuclied lower bounds on the size of covering codes. In 
Chapter 2 we discussed lower bounds for covering codes, which usually had a direct ana­
logue with an upper bound for error-correcting codes. In Chapter 3 we studied the structure 
of a linear covering code by means of its dual code. Most results were obtained using tech­
niques from coding theory. 
In this chapter we will be interested in finding constructions for covering codes that have 
few codewords, given their length and covering radius. We wil! see that, again, one can 
use constructions for error-correcting codes to design good covering codes. In particular, 
we will show that one of the constructions for error-correcting codes - a generalization 
of the direct sum construction - is in particular useful to make some exceptionally good 
covering codes. We give some other constructions as well. Before we give constructions, 
we define a measure by which one can judge the quality of a covering code. 

4.2 Quality Measures for Covering Codes 

A triviallower bound on the size of a covering code is the sphere covering bound. In the 
previous two chapters we discussed other lower bounds as well (for binary codes) . Here we 
give an upper bound on the minimum size of covering codes. The bound is nonconstructive; 
it can be obtained using a probabilistic argument. 

Lemma 4.1 Let K(n, r) be the minimum cardinality of any q-ary code of length n with 
covering radius r. Then 

qn qn 
V( ) :'S: K(n,r) :'S: V( )(l+In Vq(n,r)). 

q n, r q n, r 
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Proof: Let C be a q-ary code of length n and let c+ := {y E JF~ I d(y, C) > r}. By 
definition, code V :=CU c+ has covering radius (at most) r. Let E(C+) be the average 
cardinality of code c+ over all codes C := {x1 , •.. ,xM}, where x 1 , ... ,xM are arbitrary 
veetors of IF~. By estimating in two ways the cardinality of the set 

T := {(y,C) I d(y,C) > r, C = {x1, ... ,xM}, X; E ~ (1 ~i~ M)}, 

we find that E(C+) = qn(1- q-nvq(n, r))M . Since V := Cu c+ has covering radius at 
most r , it follows that there exists a q-ary code V of length n with coverlog radius r and 
cardinality 

lVI ~ M + qn(l- q-nvq(n, r))M. 

Now take M := kp- 1 , where p = q-nvq(n, r) and k = In Vq(n, r). A simple calculation 
shows that 

0 

Remark 4.2 A slightly weaker result was already obtained by Cohen and Frank! [15]. If 
one restricts oneself to linear codes, one obtains, perhaps rather surprisingly, almost the 
same results, see [14] and [3, 15] . One finds, e.g., that the minimum dirneusion k of any 
binary [n, k]r code satisfies the inequality · 

n- log2 V(n, r) ~ k ~ r n- log2 V(n, r) + log2(n- k)l. 

The next theorem is a consequence of Lemma 4.1. 

Theorem 4.3 If 0 ~ p ~ 7, n--+ oo, and r/n--+ p, then ~ l~gq K(n, r) -+ 1- Hq(p). 
Here Hq(x) is the q-ary entropy function, which is defined by Hq(O) := 0 and Hq(x) .­
xlogq(q -1)- xlogqx- (1- x)logq(1- x) if 0 <x~ 7· 

Proof: This follows from Lemma 4.1, using the well-known result [58, p. 
~logq Vq(n,r)--+ Hq(p), ifO ~ p ~ 7, n--+ oo, and rjn--+ p. 

55] that 
0 

The theorem indicates that, from the point of view of information theory, the capacity 
region of covering codes is known. It follows that for codes with a fixed information rate the 
minimum achievable covering radius is asymptotically known . Therefore, an asymptotical 
measure is not very useful. Instead , we consider another measure for the quality of a 
covering code, its so-called density. 
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Let C be a q-ary code of length n and let t ~ 0. The density J.L(C, t) of Cis defined as the 
average number of codeworcis that is at distance at most t from a word in the vector space 
Jr;, i.e. J.L(C, t) = q-"ICI· Vq(n, t). 

Let J.Ld(n, r) := min{J.L(C, r) IC is an (n, ICI, d)r code} and let J.Ld(r) := lim inf J.Ld(n, r). The 
n-oo 

quantity J.Ld(n, r) refiects the minimum density achievable by any code of length n, with 
minimum distance d, and covering radius r. When we are not interested in the actual 
minimum distance of the codes, we delete the distance parameter d as a subscript of the 
density functions. 

By definition, a code C with covering radius r has density J.L(C, r) ~ 1. When designing 
covering codes, one aims for codes with a small cardinality, i.e. codes with a low density. 
Conversely, if Cis e-error correcting code of length n, then J.L(C, e) ~ 1, with equality if and 
only if C is a perfect code. If {Cm}:=! is an infinite sequence of e-error correcting codes 
and J.Le(Cm) -+ 1 whenever m -+ oo, we call this sequence of codes asymptotically perfect 
codes. A trivia! example of a sequence of (asymptotically) perfect codes is the sequence 
of Hamming codes. Another example is the class of Preparata codes {Pm}, where Pm has 
parameters (2m -1, 22m_zm, 5)3 and m ~ 4 is an even integer. For reasans of symmetry, we 
call a sequence of codes {Cm} with covering radius r asymptotically perfect if J.Lr(Cm) -+ 1 
whenever m -+ oo. 

Notice that the non-constructive upper bound does not give us a fixed upper bound on the 
density of coverings: we only obtain J.Lr(n) ~ 1 +In Vq(n, r). Kabatyanskii [51] proved that 
lim J.LI ( n) = 1. For the perfect Hamming codes we have equality. Interestingly, for r > 1 
n-oo 
it is not known whether lim j.Lr(n) exists. 

n-oo 
In the rest of this chapter we wiJl explicitly construct classes of codes with (limiting) 
densities close to one. We will measure the quality of a covering code by its density alone, 
thus neglecting complexity questions related to encoding/decoding. It turns out, however, 
that the codes we construct here often allow implementations with low encoding/decoding 
cost. These implementations can easily be derived from the various constructions. 

4.3 The Direct Sum Construction; Generalizations 

One of the easiest ways to combine two codes is simply to take their direct sum. 

Definition 4.4 Let C1 and C2 be q-ary codes. The direct sum of C1 and C2 is the code 
V:=C1 xCz={(u,v) I uECI,vECz}. 

It is trivia! that code V has minimum distance d(V) = min{d(CI),d(C2)} and covering ra­
dius r(V) = r(CI)+r(C2 ) . Therefore, the direct sum construction, though simple, generally 
yields codes with a poor minimum distance and a poor covering radius. However, same­
times one can show that code V contains a proper subcode with better distance properties 
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than V itself and (almost) the same covering radius' as code V. These proper subcodes 
can be obtained via a generalization of the direct sum construction. This construction was 
introduced by Sloane et al. [73] and was mentioned as construction X4 in [64, Chapter 18]. 
The same construction was reintroduced by Honkala [42] as the blockwise direct sum con­
struction. Examples wil! demonstrate that this generalization yields some codes that are 
among the best known. 

x 
[X 

x 
x 

[X 

Figure 4.1: The direct sum versus the blockwise direct sum. 

Definition 4.5 Let C1 and C2 be q-ary codes, each the union of k subcodes dl), ... , C~k), 
resp. C~1 >, .. . ,C~k> . The blockwise direct sum (BDS) of codes C1 and C2 with respect to 
these subcodes is the code V := u{ c~i) x c~i) I 1 ::; i ::; k} - see Figure 4.1. 

Remark 4.6 The subcodes of C 1 or C2 can belabelled in k! ways, hence one can form the 
blockwise direct sum of C 1 and C2 in k! ways. The case k = 1 corresponds to taking the 
direct sum of two codes. In contrast to [64, Chapter 18], we do not require the subcodes 
of C1 or C2 to be disjoint . Usually we wil! consider partitions, however. 

lf C is the union of k translates of subcode C', we denote this by CJC'. Parameter k can 
be computed from the cardinalities of codes C and C' or follows from the context (if the 
subcodes are not disjoint). lf C/C' is a partition that is isomorphic toa vector spa.Ce over 
lFq, then we cal! CJC' a linear partition . 

The next theorem gives some useful properties of blockwise direct sums. 

Theorem 4.7 Let V be the blockwise direct sum of the partitions CJ/C; and C2/C~. Then 
V has the following properties: 

1. lf c I and c~ ( or c2 and c;) are systematic codes, then V is a systematic code. 

2. lf c; is invariant under the translation x -+ x + a and c~ is invariant under the 
translation y -+ y + b, then V is invariant under the translation (x, y) -+ (x, y) + 
(a, b). 

3. lf C11 c;, C2 , and C~ are linear codes, then V can be made linear. 
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4. If C 1 /C~ and CdC~ are linear partitions, then (C1 x C2 )/V can be made a linear 
partition. 

Proof: Trivial. D 

The next theorem gives a bound on the minimum distance of the blockwise direct sum of 
two codes. 

Theorem 4.8 [64, p. 585] Let C1 and C2 be q-ary codes, each the union of k subcodes 
(I) (k) (I) C(k) C · · . c I , ... , c I , resp. c2 , ... , 2 . Suppose that I has mmlmum dlstance dl and that all 

its disjoint subcodes have minimum distances at least du . Furthermore, suppose that the 
respective distances for code C2 and its disjoint subcodes are d2 and d22 . Then the blockwise 
direct sum V of these two codes has minimum distance d(V) ~min{ du, d22 , d1 + d2 }. 

Proof: Trivial. D 

Remark 4.9 Notice that the subcodes of C1 and C2 are assumed to be disjoint. If one 
drops this restriction, Theorem 4.8 remains valid, provided every code is viewed as a 
multiset, every union is viewed as a union of multisets, and the minimum distance of a 
multiset is defined to be zero if any word is contained more than once in this multiset. 
Since we setdom use codes with intersecting subcodes as input to the BDS-construction, 
we refrain from giving forma! definitions here. 

The blockwise direct sum construction can be used to obtain new 2-error-correcting codes 
from old ones. As an example, we consider a construction due to Sloane et al. [73]. The 
codes one obtains via this construction are among the best known. 

Construction 4.10 [64, p. 587] Let m ~ 4 be divisible by four. The Hamming code 
Hm of length 2m- 1 can be partitioned into 2m-l translates of the Preparata code Pm, 
see [64, p. · 474]. The vector space IF~, with n = ffm- 1, can be partitioned into 2m-l 
translates of the Preparata code P(m/2 ) of length n. If we apply the BOS-construction with 
as inputs the partitions Hm/Pm and IF~/P(m/2), then the resulting code has parameters 
(2m + ffm - 1, 2(2m+v'2"'-l)-2m, 5). The minimum distance follows from Theorem 4.8 and 
the minimum distances of the Hamming code and the Preparata code, which are three, 
resp. five. 

Theorem 4.8 gives a bound on the minimum distance of the blockwise direct sum of two 
codes. It is possible to give a bound on the covering radius as well. This bound depends 
on a notion, called the k-norm. 
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Definition 4.11 Let C be a q-ary code of length n. Let C be the union of k subcodes 
c(ll, ... , C(k), which do not necessarily have to be disjoint. The k-norm N of code C with 
respect to subcodes C(ll, ... , C(k) is the maximum value of min d(x, C(il) + mÇLX d(x, cUl) 

' J 
over all x E Ir;. 

Theorem 4.12 [42] Suppose that cl c Ir;' has k-norm NI with respect to subcodes 
(!) (k) c 1Fn2 h k . h b d (!) c(k) cl , ... , cl and that 2 c q as -norm N2 Wit respect to SU co es c2 , ... , 2 . 

Then the blockwise direct sum 1) of these two codes has covering radius r $ L(N1 +N2)/2J. 
Moreover, if k = 2, then 1) has 2-norm NI + N2 with respect to subcodes dl) x c~l) and 

c~2 ' x c~2 '. 

Proof: Let z = (x,y) E Ir;' x IF~2 • Let a and {3 be defined by d(x,CI) = d(x,d0
)) and 

d(y, C2 ) = d(y, d/'). Then d(z, C~o) x C~ol) + d(z, c~lll x d/') = ( d(x, C~o)) + d(x, c~lll)) + 

(d(y,C~o)) +d(y,C~')) $ N 1 + N2. It follows that d(z,V) $ lN1 + N2)/2J. The other 
statement follows from the observation that for k = 2 the upper bound N 1 + N 2 can be 
attained (with a i= {3). 0 

Remark 4.13 In fact, Theorem 4.12 also holds under slightly weaker conditions. To 
this end, Honkala [42] introduced a slightly weaker notion than k-normality, the so-called 
(k, t)-subnormality. Since this refinement does not yield stronger results when applying 
the BDS-construction, we do not describe this refinement in detail. 

Lemma 4.14 Let C be a q-ary code with covering radius r which is the union of k subcodes 
cPl, ... , C(k), each with covering radius at most r'. Then C has k-norm N $ r + r' with 
respect to C(ll, ... , C(k). 

Proof: This follows from Definition 4.11 and the fact that d(x 1 C) = mind(x,C(il). 0 
' 

We wil! apply the BDS-construction primarily to binary codes. The following observation 
wil! prove to be useful later on. 

Lemma 4.15 Let C be a binary code with k-norm N with respect to subcodes C(ll 1 ••• 1 C(kl. 
- - -(!) ,.{k) -

Then C has an even k-norm N with respect to subcodes C 1 ••• 1 C 1 and N = N + 1 or 
N=N+2. 

Proof: An extended binary code has an even k-norm, since it only contains codewords 
of even weight. Since d((x

1 
0)

1 
(?<il) + d((x1 1), (?<il) = 2d(x,C(i)) + 1 for all i, 1 $ i $ k, it 

follows from Definition 4.11 that the k-norm of Cis at least N + 1. On the other hand it 
is trivia! that the k-norm of Cis at most N + 2. This proves the lemma. 0 

Remark 4.16 For k = 1 this lemma reduces to Lemma 3.6. 
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4.3.1 Some k-N orms 

Befare we can apply Theorem 4.12, we need to find the k-norms of some specific codes. 

Let C be a q-ary code of length n with covering radius r. The vector space IF'; is the 
union of k translates of code C, for some k :::; Vq(n, r) = !Br(O)!. The upper bound on 
k follows from the definition of the covering radius, which implies that C + Br(O) = JF';. 
Consequently, IF~IC has k-norm r, for some k :::; Vq(n, r) . Sametimes one can imprave 
this bound on k considerably, especially when C partitions IF~, e.g. when C is a linear or 
a systematic code. In these cases we find k = qn I IC I· 

In particular, we obtain the following two norms: 

Norm 4.17 The vector space IF~, with n = 2m-1, can be partitioned into n+1 translates 
of the Hamming code Hm· Since the Hamming code has covering radius one, we find that 
IF~ IHm has 2m-norm 1. More generally, if C is a block code of length n with covering 
radius one, then IF~ IC has ( n + 1 )-norm 1. 

Norm 4.18 Let C be a binary code with parameters (n, 2n-m)2 that partitions the vector 
space IF~ into 2m translates. Since C has covering radius two, we find that IF~IC has 
2m-norm 2. More generally, if JF~ is the union of 2m translates of a block code C with 
covering radius two, then IF~ IC has 2m-norm 2. In particular, this holds if n + 1 :::; v'2m+l, 
since then V(n, 2):::; 2m. 

The next norm wil! prove to be the key to many constructions for covering codes with a 
low density. 

Norm 4.19 For all even m 2: 4, the Hamming code Hm of length n = 2m- 1 can be 
partitioned into 2m-l translatesof the Preparata code Pm. The 2m-1-norm of HmiPm 
can be determined using the following property of Preparata codes: if d(x, Pm) = 3, then 
x E Hm, and if x fi.Hm, then d(x, Pm) < 3. From this property we infer that HmiPm has 
2m-1-norm 3. 

Remark 4.20 The partition HmiPm has 2m-1-norm 3. Based upon the covering radii of 
the Hamming code and the Preparata code alone, one would have estimated this norm to 
be four. This explains the usefulness of Norm 4.19. 

The next norm can be determined from the covering radii of the codes involved. 

Norm 4.21 The Hamming code Hm of length n = 2m - 1 can be partitioned into 2m 
cosets of the double-error-correcting BCH-code BCHm(5) . This BCH-code has covering 
radius three, since it is a quasi-perfect code, cf. [64, p. 279]. The Hamming code has 
covering radius one, hence Hml BCHm(5) has 2m-norm 4. 
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4.3.2 Some Blockwise Direct Sums 

In this section we give some examples of the BDS-construction. We will use the k-norms 
computed in the previous section. In each instanee of the BDS-construction, we merely 
indicate which codes are the inputs to this construction. The minimum distances and cov­
ering radii of the constructed codes follow by a straightforward application of Theorems 4.8 
and 4.I2, using the k-norms mentioned before. In all cases it can readily be verified that 
the bound on the covering radius is tight. Unless stated otherwise, the constructed codes 
have better parameters than previously known. 

We will frequently use the functions nd(m,r), which denotes the smallest integer n such 
that an (n, 2n-m)r code exists. lf we restriet ourselves to systematic codes, we use the 
notation nd(m, r) instead. 

Construction 4.22 Let m 2 4 be even. The partit.ion Hm/Pm has 2m- 1-norm 3. The 
partit.ion Ir;_/'Hm-l• where n = 2m-l- I, has 2m- 1-norm 1. Using Lemma 4.I5, we infer 
that the partition IF2/'Hm-l has 2m- 1-norm 2. lf we apply the BDS-construction with as 
inputs the partitions 'Hm/P m and Ir;. /1tm-l, then the resulting code V2m has parameters 
(2m + 2m-l -I, 2(2m+2m-'-l)-2m, 4)2. Therefore n4(2m, 2) :::; ~2m- 1. The density of this 
class of codes satisfies J..l(V2m, 2)-> I!, if m-> oo. Hence J..l4(2):::; I!. 

Remark 4.23 This bound is essentially due to . Etzion et al. [27). Although they used a 
perfect mixed code with covering radius two to construct these codes, their method can be 
described simHar to Construction 4.22: their codes result from the BDS-construction with 
as inputs the partitions 'Hm/Pm and IF';_/'Hm-l· The parameters of the resulting codes are 
the same as those for the codes obtained via Construction 4.22, except for the minimum 
distance, which is only three in their construction. 

The codes one obtains via Construction 4.22 are nonlinear, since they use the Preparata 
code as a building block. In genera!, it is not known whether codes with these parameters 
exist that are linear. For m = 4 the answer is negative: Construction 4.22 yields the bound 
n4(8, 2) :::; 23. Calderbank and Sloane [11) proved that linear [23, I5)2 codes do not exist. 
In fact, [24, I6]2 codes do not exist either, as was proved by Struik [79]. The best-known 
linear codes with redundancy eight have been constructed by Gabidulin et al. [30]. They 
have parameters [26, I8, 3]2 or [28, 20, 4]2, depending upon the minimum distance. For 
m = 6, Construction 4.22 yields the bound n4(I2, 2) :::; 95. The best-known linear codes 
with redundancy twelve have parameters [I07, 95, 3]2 or [117, 105, 4]2, depending u pon the 
minimum distance. These codes have been constructed by Davydov et al. [23], resp. 
Gabidulin et al. [30]. On the other hand, n•(I2, 2) 2 9I, since any code with parameters 
(90, 278 )2 is a perfect code and perfect codes with these parameters do not exist. Moreover, 
equality in this bound cannot be attained by a linear code, as was proved by Struik [80]. 
These examples demonstrate that Construction 4.22 can be extremely powerful. 
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The codes one obtains via Construction 4.22 have density approximately 1 ~. Up to now this 
has been the best result known for codes with covering radius two. The next construction 
shows that one can do even better: we will construct codes with covering radius two that 
asymptotically have density 1, i.e. which are asymptotically perfect codes! 

Construction 4.24 Let m ~ 4 be even. The partition 1im/Pm has 2m-1-norm 3. Let C be 
an ( nd, 2nd-(m-l), d)2 code which partitions JF'.ld into 2m-l translates. The partition JF'~d /C 
has 2m- 1-nor~ 2. If we aJ)ply the BDS-construction with ~ inputs these two partitions, 
then the resultmg code V~m-l has parameters (2m+nd-1, 2(2 +nd- l)-(2m-l), d)2 . Therefore 
nd(2m -1, 2) ~ (2m -1) + nd. Now we consider some specific choices for code C. Consider 
the linear codes with covering radius two and odd codimension constructed by Gabidulin 
et al. [30]. These codes have parameters [n, n- (m- 1), d]2, where 

{ 

2ffm- 1 
n = ~ffm- 3 

llffm"- 3 
16 

if d = 3 or d = m = 4, 

if d = 4 and m ~ 6, 

if d = 4 and m ~ 10. 

(4.1) 

Since these codes are all linear, code C can be chosen to be any of these codes. Thus we 
obtain the bounds n3(2m -1, 2) ~ 2m + ~ffm- 2, for all even m ~ 4, and n:(2m -1, 2) ~ 
2m + ~ffm- 4, for all even m ~ 10. In both cases, we find that the density of this class 

of codes satisfies J-L(V~~- 1 , 2)---> 1, if m---> oo. Hence J-L3 (2) = J-L4 (2) = 1. This means that 
we constructed a sequence of asymptotically perfect codes with covering radius two! 

Again, it is not known whether linear codes with these parameters exist. For m = 4, 
Construction 4.24 yields the bounds n:(7, 2) ~ 19. The best-known linear codes with 
redundancy seven have parameters [19, 12, 3]2 or [21, 14, 4]2, depending u pon the minimum 
distance, cf. Equation (4.1) . It was conjectured in [30] , that [19, 12,4]2 codes do not exist. 
Construction 4.24 proves that this conjecture is false, if the restrietion to linear codes 
is dropped. For m = 6, Construction 4.24 yields the bound n:(ll, 2) ~ 72. The best­
known linear codes with redundancy eleven have parameters [79, 68, 3]2 and [89, 78, 4]2, 
depending upon the minimum distance. This example shows that Construction 4.24 can 
be extremely powerful, even when the redundancy is small. Notice the strong similarity 
between Construction 4.24 and Construction 4.10. 

Construction 4.25 [27] Let m ~ 4 be even. The partition 1im/Pm has 2m- 1-norm 3. 
Using Lemma 4.15, we infer that the partition 1im/Pm has 2m- 1-norm 4. If we apply the 
BDS-construction with as inputs these two partitions, then the resulting code V3m has 
parameters (2m+l - 1, 2(2m+'-I)-Jm, 5)3. Therefore n;(3m, 3) ~ 2m+l - 1. The density of 
this class of codes satisfies J-L(V3m, 3) ---> q, if m---> oo. Hence J-L5 (3) ~ q. 

Before we can give the next construction, we need to compute another norm. 
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Norm 4.26 Let m ~ 4 be even. The Hamming code 1im of length n = 2m - 1 can be 
partitioned into 2m-I translatesof the Preparata code Pm. It follows, that the code 1im x 
lF 2 can be partitioned into 2m translates of the extended Preparata code P m· Therefore, 
code :F2m := 1im x (1im x JF2) can be partitioned into 2m translates of the code D3m 
obtained via Construction 4.25. Since :F2m bas covering radius two, we find that the 
partition :F2m/D3m bas 2m-norm 5. 

Construction 4.27 [27] Let m ~ 4 be even. The partition :F2m/D3m bas 2m-norm 5, cf. 
Norm 4.26. The partition 1F~/1im, where n = 2m -1, bas 2m-norm 1. Using Lemma 4.15, 
we infer that the partition JF";/1im bas 2m-norm 2. If we apply the BDS-construction 
with as inputs the partitions :F2m/D3m and 1F~/1im, then the resulting code D3m+I bas 
parameters (3 · 2m - 1, 2<3·2'"-I)-(3m+I), 3)3. Therefore nj(3m + 1, 3) ::::; 3 · 2m - 1. The 
density of this class of codes satisfies J.L(D3m+l> 3)--+ 2i, if m--+ oo. Hence J.L3(3)::::; 2i. 

The codes one obtains via Construction 4.27 have covcring radius three and redundancy 
3m + 1, where mis even. Codes with the same covering radius and redundancy can also 
be constructed, if m is odd. The parameters turn out to be even better. 

Construction 4.28 Let m ~ 4 be even. The partition 1im/Pm has 2m-1-norm 3. The 
partition 1im-d BCHm-I (5) bas 2m-1-norm 4. If we apply the BDS-construction with as 
inputs these two partitions, then the resulting code D3m_2 has parameters (2m + 2m-I -
2,2<2'"+2'"-'-2l-(3m- 2l,5)3. Therefore n;(3m- 2, 3)::::; ~2m- 2. The density of this class 
of codes satisfies J.L(D3m-2, 3) --+ 2i, if m --+ oo. Hence J.L5 (3) ::::; 2i. Although the limiting 
density is not very impressive, we still find some good codes of small length in this way: 
n;(10, 3) ::::; 22, n5(16, 3) ::::; 94. The bound n*(10, 3) ::::; 22 can also be realized by a 
punctured Golay code with parameters [22, 12, 6]3. 

Remark 4.29 In [23] Davydov and Drozhzhina-Labinskaya constructed linear codes with 
parameters [3 · 2m -1, (3 · 2m - 1)- (3m + 1), 3]3 for all m ~ 7 and for m = 5. These linear 
codes and the nonlinear codes obtained via Construction 4.27 have the same parameters (if 
mis even). The codes one obtains via Construction 4.28 have, for the same redundancy, a 
slightly shorter length than these linear codes and a higher minimum distance: five instead 
of three. In general it is not known whether linear codes with the parameters obtained via 
Construction 4.28 exist. 

Construction 4.30 Let m ~ 4 be even. The partition :F2m/D3m bas 2m-norm 5, cf. 
Norm 4.26. Using Lemma 4.15, we infer that the partition :F2mf'D3m bas 2m-norm 6. If we 
apply the BDS-construction with as inputs these two partitions, then the resulting code 
D5m+l has parameters (2m+2 -1, 2(2'"+

2 -I)-(Sm+l), 3)5. Therefore, nj(5m+ 1, 5) ::::; 2m+2 -1. 
The density of this class of codes satisfies J.L('Dsm+I, 5) --+ t- = 4ï\- Hence J.L3(5) ::::; 4k 
Thongh this limiting density is not very impressive, we still find some good codes of smal! 
length in this way: nj(21, 5) ::::; 63, nj(31, 5) ::::; 255. 
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The blockwise direct sum construction yields the best results, when it is applied to code 
partitions. The next two constructions show that we do not have to restriet to partitions, 
though. 

Construction 4.31 Let m ~ 4 be even. The partition 'Hm/Pm has 2m-1-norm 3. Let C 
be an (n, ICI)1 code, with n:::; 2m-l- 1. The covering IP'i/C has (n + 1)-norm 1. Since 
n + 1 :::; 2m-l, IF';_ /C also has 2m-1-norm 1. Using Lemma 4.15, we infer that IF';_ /ë has 
2m-1-norm 2. If we apply the BDS-construction with as inputs the partitions 'Hm/Pm 
and IF';_(ë, then the resulting code 1) has parameters (2m + n, ICI· 22m-m-l, 2)2. Now we 
consider some specific choices for code C. If we take C = 'Hm-l! then this construction 
coincides with Construction 4.22. If we take n < 2m-l - 1, then we get new results. In 
general we can choose C to be any optima! covering code, i.e. ICI = K(n, 1), and obtain 
a code with parameters (2m + n, J((n, 1) · 22m-m-l, 2)2, where n + 1 ::=; 2m-l. We give 
two examples for m = 4, due to Etzion et al. [27]. If we choose C to be the (unique) 
(5, 7, 1)1 code, then we obtain a code with parameters (21, 7 · 211 , 2)2. lf we choose C to be 
a (6, 12, 2)1 code, then we obtain a code with parameters (22, 12 · 211 , 2)2. 

Construction 4.32 Let m ~ 4 be even. The partition 'Hm/Pm has 2m-1-norm 3. Let C 
be an (n, IC I, d)2 code, with n :::; ffm- 1. The covering IF~ /C has k-norm 2, for some 
k:::; V(n,2). Since n+ 1:::; ffm, we have V(n,2):::; 2m-l, so IF~/C also has 2m-1-norm 2. 
lf we apply the BDS-construction with as inputs the partitions 'Hm/Pm and IF~/C, then 
the resulting code 1) has parameters (2m+n-1, ICI·22m-m-l, min{3, d} )2. We now consider 
some specific choices for code C. In general we can choose C to be any op ti mal covering code, 
i.e. ICI = J((n, 2), and obtain a code with parameters (2m + n- 1, J((n, 2) · 22m- m-l, 2)2, 
where n+ 1 :::; ,JF. We give two examples for m = 6. If we choose C to be a (7, 7, 1)2 code, 
then we obtain a code with parameters (70, 7 · 257

, 1)2. If we choose C to be a (8, 12, 2)2 
code, then we obtain a code with parameters (71, 12 · 257

, 2)2. Notice, that n + 1 > ,J2m 
in the last example. Nevertheless, we can still apply the construction, since there exists 
an (8, 12, 2)2 code for which 32 translates cover the vector space IF~ . This can beseen as 
follows: if one applies the ADS-construction toa (6, 12, 2)1 code and the [3, 1, 3] repetition 

code, then the resulting code has parameters (8, 12,2)2 = (6,12,2)1$ [3,1,3]1. Since ~ 
is the union of seven translatesof the (6, 12, 2)1 code, in fact IF~ is the union of (at most) 
28 = 4 · (6 + 1) translates of this (8, 12, 2)2 code. 

Norm 4.33 Let m ~ 4 be even. The vector space IF~, with n=2m-1 -1, can be partitioned 
into 2m translates of the Hamming code 'Hm-l· It follows , that the code JF~+l can be 
partitioned into 2m translates of the extended Hamming code 'Hm- l· Therefore, code 
Fm := 'Hm x JF~+l can be partitioned into 2m translates of the code 'D2m obtained via 
Construction 4.22. Since Fm has covering radius one, we find that the partition Fm/'D2m 
has 2m-norm 3. 

Construction 4.34 Let m ~ 4 be even. The partition Fm/'D2m has 2m-norm 3, cf. 
Norm 4.33. Let C be an (n, ICI)1 code, with n:::; 2m - 1. the covering IF~/C has (n + 1)­
norm 1. Since n + 1 :::; 2m, IF~/C also has 2m-norm 1. Using Lemma 4.15, we infer 
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that ~ jC has 2m-norm 2. If we apply the BDS-construction with as inputs the partitions 
Fm/'D2m and IF~/C, then the resulting code 'D has parameters (~2m +n, ICI·Û2m-m-I, 1)2. 
Now we con si der some specific choices for code C. If we take C = 1im, then this construction 
coincides with Construction 4.22. If wetaken < 2m-1, then we get new results. In general 
we can choose C to be any optimal covering code, i.e. ICI = K(n, 1), and obtain a code 
with parameters (~2m + n, K(n, 1) · Û 2m-m-I, 1)2, where n + 1 :::; 2m. 

Example 4.35 Using the tables of K(n, 1) of [27] we find codes with the following pa­
rameters: 

K(31, 2):::; K(7, 1) x 219 :::; 16 x 219 , 

K(32, 2):::; K(8, 1) x 219 :::; 32 x 219 , 

K(33, 2):::; K(9, 1) x 219
:::; 62 x 219

, 

K(34, 2):::; K(10, 1) x 219 :::; 120 x 219 , 

K(35, 2):::; K(11, 1) x 219 :::; 192 x 219 , 

K(36, 2):::; K(12, 1) x 219 :::; 382 x 219 , 

K(37, 2):::; K(13, 1) x 219 :::; 750 x 219 , 

K(38, 2) :::; K(14, 1) x 219 :::; 1460 x 219 , 

K(39, 2) :::; K(15, 1) x 219 :::; 2048 x 219 . 

We conclude this section by giving a BDS-construction, where not all subcodes are trans­
lates of each other. 

Construction 4.36 Let C be the (6, 12, 2)1 code of Example 4.81. By inspeetion we see 
that C can be partitioned into the following three subcodes, each with covering radius two: 

c1 := {(ooo, 10o), (111, o11), (100, 111), (011, ooo)}, 
c2 := {(ooo, o10), (111, 101), (010, 111), (101, ooo)}, 
c3 := {(ooo, oo1), (111, 11o), (oo1, 111), (110, ooo)}. 

Consequently, the partition of c into the three subcodes c I, C2, and c3 has 3-norm 3. Using 
Lemma 4.15, we infer that the partit.ion of C into the subcodes C1 , C2, and C3 has 3-norm 
4. If we apply the BDS-construction with as inputs these two partitions, then the resulting 
code 'D has parameters (13, 48, 3)3. 

4.4 A Construction U sing the Golay Code 

In the previous section we used the BDS-construction to obtain a large number of covering 
codes. These codes are all nonlinear, since their construction involves Preparata codes. 
Here we shall give some examples of linear codes that can be obtained via the BDS­
construction. The constructions involve the binary Golay code and some codes derived 
from this code. Using the relations between these codes, we obtain two new norms. This 
information will enable us to find some linear covering codes with better parameters than 
previously known. 

Trivially, the Golay code is a subcode of some linear code with covering radius two. We 
will show that the Golay code is contained in a [23, 16, 2]2 code. Since [23, 15]2 codes do 
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not exist, this is optima! in some sense. In addition, we will show how the Golay code can 
be used to construct a [30, 19, 4]3 code that is contained in a [30, 22, 3]2 code. 

First we introduce some notations. 
Let a be a primitive element of GF(8). The points of the projective line PG(1,8) are 
1-dimensional subspaces of (JF8 ) 2 and can be identified, via the vector space isomorphism 
GF(8) s=! (JF2) 3 , with 3-dimensional subspaces of (JF2) 6 • Thus the projective points (0, 1), 
(1, 0), (1, 1), resp. (1,a) can be identified with the 3-dimensional vector spaces P~. P 2, P 3, 

resp. P 4 in (JF2) 6 • These vector spaces are pairwise independent. With each pointpof the 
projective line PG(1, 8) we associate a matrix V(p) := (a0p, a 1p, · · ·, a 6p, 0), where each 
column is considered in its binary representation. The result of puncturing this matrix on 
the zero-position is denoted by V*(p). Define P1 := V(0,1) , P2 := V(1 , 0), P3 := V*(1,1), 
and P4 := V*(1, a) . 

Now we define the Golay code. 
Let 1t be the cyclic [7, 4, 3] Hamming code with zero a. Let 1tr be obtained by reversing 
the positions of all codeworcis of 1t. The extended Golay code Ç24 is defined by 

924 :={(a+ x , b +x, a+ b +x) I a, b E 1t and x E 1tr} . 

This self-dual code has parameters [24, 12, 8]4. The binary Golay code Ç23 with parameters 
[23, 12, 7]3 can be obtained by puncturing Ç24 on its last coordinate. 

The extended Golay code is a self-dual code. Consequently, the veetors (1, 0, 0), (0, 1, 0), 
(0, h, h), and (h, 0, h) , where h is a codeword of the extended Hamming code 1t, are 
parity checks of the extended Golay code. Hence all codeworcis ( c1 , c2 , c3 ) of the Golay 
code satisfy the parity check equations: 

3 T E c;P; = 0, 
i= l 

wt(c1) and wt(c2) are even. 
(4.2) 

Consicier the [23, 15] code defined by the equations of ( 4.2). This code has covering radius 
three and contains the Golay code as a subcode. We will show, that if one deletes a suitable 
parity check equation from the equations of ( 4.2) , then one obtains a code with parameters 
[23, 16, 2]2. Moreover, we will show how the Golay code can be used to define a [30, 19,4]3 
that is contained in a [30, 22, 3]2 code. 

3 
Let V 7 := {(x1,x2,x3 ) I wt(x1 +x2 ) is even, E x;P{ = 0}. Using the fact that the vector 

i= I 
spaces P 1, P 2 , and P 3 are pairwise independent, one easily verifies that V 7 has parameters 
[23, 16, 2]2. Each codeword of t.he Golay code satisfies the equations of ( 4.2), hence V1 
contains the Golay code as a subcode. 
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4 
Let Va:= {(x1,x2,x3,x4) I wt(x1) and wt(x2) are even, L: X;Pt = 0}. Using the fact 

i= I 
that the vector spaces Ph ... , P 4 are pairwise independent, one easily verifies that Va has 
parameters [30, 22, 3]2. Observe that, for every codeword c of the Golay code, the word 
(c, 0) is a codeword of Va. We will use this observation to design a [30, 19, 4]3 that is 
contained in code Va. 
Let XI, x2, and x3 bematrices such that (XI I X2) is a parity check matrix of code Va 

and such that (X[ I xrt is a parity check matrix of the Golay code. Let VIl be the 
code with parity check matrix 

Dl. = ( ____&_l__&_) 
11 ~· 

where J denotes the all-one matrix. By construction, code V 11 is contained in code Va 
and has parameters [30, 19, 4]3. The minimum distance of V 11 follows from the fact that 
the vector spaces P 1 , • •• , P 4 are pairwise independent; the covering radius follows from 
the observation that adjoining extra columns to a parity check matrix of the Golay code 
does not increase the covering radius. 

From the properties of codes V 7 and Va we obtain the following two norms. 

Norm 4.37 There is a partition [23, 16, 2]2/[23, 12, 7]3 with 16-norm 5. 

Norm 4.38 There is a partition [30, 22, 3]2/[30, 19, 4]3 with 8-norm 5. 

We give two examples ofhow Norm 4.37 and Norm 4.38 can be used in the BDS-construction 
to obtain linear covering codes. The codes wil! have better parameters than previously 
known. As before, we merely indicate which codes are the inputs to the BDS-construction. 
In each instance, the minimum distance and the covering radius of the constructed codes 
follow by a straightforward application of Theorems 4.8 and 4.12. The linearity of the 
constructed codes follows from Property 3 of Theorem 4.7. 

In [9] Brualdi and Pless obtained a [48, 29, 4]3 code by applying an ADS-construction on 
the binary Golay code and a [26, 18, 3]2 code, thus proving the bound l4(19, 5) ::=:; 48. The 
next construction impraves this upper bound by one. 

Construction 4.39 The partition [23, 16, 2]2/[23, 12, 7]3 has 16-norm 5, cf. Norm 4.37. 
Using Lemma 4.15, we infer that the partition [23, 16, 2]/[23, 12, 7] has 16-norm 6. If we 
apply the BDS-construction with as inputs these two partitions, then we obtain a code 
with parameters [47, 28, 4]5. Therefore l4 (19, 5) ::=:; 47. 

Remark 4.40 By analyzing the BDS-construction in detail, we see that the nonzero code­
worcis of the [47, 28, 4]5 code obtained via Construction 4.39 have either weight four or 
weight at least seven and that the first situation only occurs once. 
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The bound l(l2, 3) s 38 was mentioned in [9] as a private communication of Dan Ashlock, 
but his computer proof could not be reproduced [IJ. We will construct a [38, 26, 4]3 code, 
thus showing that this bound remains valid. In fact, we give four constructions that suc­
cessively improve the bound l(12, 3) S 41 to the bound l(12, 3) s 38. These constructions 
illustrate to what extent the various generalizations of the direct sum construction can be 
used to improve bounds. 

The direct sum of a [26, 18,3]2 code and a [15,11, 3]1 Hamming code is a code with parame­
ters [41, 29, 3]3. If one applies an ADS-construction on these codes, then one obtains a code 

with parameters [40, 28, 3]3 = [26, 18, 3]2EB [15, 11, 3]1. Constructions 4.41 and 4.42 yield 
further improvements. The first construction yields a code with parameters [39, 27, 4]3; 
the latter one a code with parameters [38, 26, 4]3. We will use Norm 4.17. 

Construction 4 .41 The partition JF~5 / [15, 11, 3] has 16-norm 1. Using Lemma 4.15, we 
find that partition [16, 15, 2]/[16, 11, 4] has 16-norm 2. The partition [23, 16, 2]2/ [23, 12, 7]3 
has 16-norm 5, cf. Norm 4.37. If we apply the BDS-construction with as inputs these two 
partitions, then we obtain a code with parameters [39, 27, 4]3. Therefore l4 (12, 3) S 39. 

Construction 4.42 The partition IFU [7, 4, 3] has 8-norm 1. Using Lemma 4.15, we infer 
that the partition [8, 7, 2]/[8, 4, 4] has 8-norm 2. The partition [30, 22, 3]2/ [30, 19, 4]3 has 
8-norm 5, cf. Norm 4.38. If we apply the BDS-construction with as inputs these two 
partitions, then we obtain a code with parameters [38, 26, 4]3. Therefore l4 (12, 3) S 38. A 
parity check matrix for this code is shown in Figure 4.2. 

00000000 10010110 1001011 1001011 00000000 
00000000 01011100 0101110 0101110 00000000 
00000000 00101110 0010111 0010111 00000000 
10010110 00000000 1001011 0010111 00000000 
01011100 00000000 0101110 1011100 00000000 
00101110 00000000 0010111 0101110 00000000 
11111111 00000000 0000000 0000000 00000000 
00000000 11111111 0000000 0000000 00000000 
11101000 11101000 1110100 1111111 10010110 
00111010 00111010 0011101 1111111 01011100 
01110100 01110100 0111010 1111111 00101110 
00000000 00000000 0000000 0000000 11111111 

Figure 4.2: Parity check matrix of a [38,26,4]3 code. 
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4.5 Amalgamated Direct Sums 

In the previous section we used the BOS-construction to design infinite families of covering 
codes with a low density. In all these constructions we used Preparata codes and the prop­
erty that the partition 'Hm/Pm has 2m- 1-norm 3 (cf. Norm 4.19). Based upon the covering 
radii of the Hamming code and the Preparata code alone, one would have estimated this 
norm to be four. This explains the usefulness of this specific k-norm. In genera!, the 
problem of finding the k-norm of a code c with respect to the subcodes c(l)' 0 0 0 'c<k) is 
very hard. The case k=2 has received considerable attention in the literature. In fact, 
most papers on covering radius problems deal with this case. For small parameters, this 
specific instanee of the BOS-construction yields some good results; for larger lengths the 
results are poor. The constructions are all referred to as amalgamated direct sum (AOS) 
constructions. In all constructions, 2-norms play a key-role. To analyze this so-called 
AOS-construction, a confusing number of notions has been introduced: normality, subnor­
mality, seminormality, strong seminormality, and (k, t)-subnormality. Below we will give a 
uniform description of the main results on the AOS-construction. We restriet ourselves to 
binary codes. 

We denote the even weight subcode of a code C by c., the odd weight subcode by 
C0 • Sametimes we will use the linear mapping a on JF'; defined by a(x1 , ... , Xn) .-

n 
( L: x;, x2 , ••• , Xn)· Notice that a2 =a o a is the identity mapping. 
i=l 

4.5.1 Some 2-Norms 

In this section we will find a large class of binary codes with a smal! 2-norm. First we give 
an example. 

Example 4.43 Let C0 be the [6, 3, 3] code with parity check matrix H defined by 

0 1 1 ) 
1 0 1 0 

1 1 0 1 

This code has covering radius two and all veetors x with d(x, C0 ) = 2 have syndrome 
s = (111), i.e. are in code C1 := 1 + C0 . Similarly, all veetors x with d(x, C1) = 2 are in 
code Co. It follows, that C := C0 U C1 has 2-norm 2 with respect to subcodes C0 and C1. 

Notice that the 2-norm could not have been smaller than 2, since C has covering radius 
one. Codes C, C0 , and C1 can be obtained by puncturing, resp. shortening the [7, 4, 3] 
Hamming code on a coordinate. 

The [7, 4, 3] Hamming code is an example of a code from which one can obtain partitions 
with a relatively smal! 2-norm. Such codes are called normal codes. 
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Definition 4.44 Let C be a binary code of length n with covering radius r. Suppose C bas 
2-norm N with respect to subcodes C0 and C1• Trivially, we haveN~ 2r. If N s; 2r + 1, 
then C is called a subnormal code (with respect to subcodes C0 and CI). Coordinate i is 
called a suitable coordinate, if C[i] bas 2-norm N' < N with respect to subcodes C0 [iJ and 
Ci[i]. If Cis subnormal with respect to subcodes C0 and C1 and bas a suitable coordinate, 
then C is called a normal code. A code that is not normal is called abnormal. 

Remark 4.45 We will only consider partitions of a code C into two subcodes C0 and C1 , 

i.e. we wil! always assume that C0 and C 1 are disjoint sets. Any set S c JF?. defines a 
partition of a code C into the two subcodes C n S and C \ S. Conversely, any partition 
of C into two subsets can be defined via such a separating set. For conciseness, we wil! 
sametimes specify a partition of a code into two su beodes via a separating set. 

Normal codes were introduced by Graham and Sloane in [32] for linear codes. In [32] 
and all subsequent papers [12, 17, 28, 40, 42, 67, 85] normal codes are defined in a more 
restrictive way than we do: in all these papers a code is called normal, if it is subnormal 
with respect to one of the hyperplanes (e;)l., where 1 s; i s; n. We wil! show that our 
more general definition of normality does not impose any restrictions on later constructions 
(cf. Construction 4.46). Our definition also shows that the abnormal codes constructed in 
[28, 55, 85] are not abnormal at all! (if one takes our definition of normality). 

The main reason for introducing normal codes is the so-called amalgamated direct sum 
construction. 

Construction 4.46 Let C 1 c JF~' and C2 C IF~2 be codes with covering radius r 1 , resp. 
r2 . Suppose that cl is a normal code with respect to subcodes c~O) and cP' and suppose i 
is a suitable coordinate, where 1 s; is; n1• Moreover, suppose that C2 is a subnormal code 
with respect to subcodes c~O) and c~ll. By definition, Ci[i] has 2-norm at most 2rl with 
respect to subcodes C~0l[i] and cP'[i] . lf we apply the BDS-construction with as inputs the 
codes C1 [i] and C2 with their respective subcodes, then the resulting code V has parameters 
(n , M)r, where n = n1 + n2 - 1, M s; id0'1· jC~0ll + ICP'I·IC~lll, and r s; r1 + r2. Notice, 
that if r(V) = TJ + r2, then V is subnormal with respect to subcodes Vo := C~0,[i] x c~O) 
and VI := c~J) [i] x c~J). 

Notice that the BDS-construction with C0 and C1 and their respective subcodes as inputs 
yields a code V' with the same cardinality as code V, but now with length n 1 + n2 and 
covering radius (at most) r 1 + r 2 + 1. Code V can be obtained by puncturing code V' 
on coordinate i. The normality of code C0 guarantees that puncturing yields a code with 
covering radius r 1 + r 2 , which is usually one less than the covering radius of code V'. This 
is the main motivation for distinguishing between normal and subnormal codes. 

Remark 4.47 Construction 4.46 was introduced by Graham and Sloane [32] as the amal­
gamated di rect sum construction. In that paper and subsequent papers code V is called 
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the amalgamated direct sum (ADS) of codes C1 and C2 and is denoted by C1 4 C2 • This 
notation is ambiguous, though, since there might be more than one suitable coordinate. 

Therefore we denote by C1 4 C2 the collection of all possible amalgamated direct sums of 
cl and c2. 

4.5.2 Normal and Subnormal Codes 

Lemma 4.48 Let C be a binary code of length n. Suppose C has 2-norm N with respect 
to subcodes C0 and C1. Then code V:= (Co x {0}) U (C1 x {1}) has 2-norm N + 1 with 
respect to the hyperplane (en+ I ).L. 

Proof: Code C has 2-norm N with respect to subcodes C0 and C 1. The binary field IF 2 

has 2-norm 1 with respect to the singleton-sets {0} and {1}. The lemma now follows from 
Theorem 4.12. D 

By symmetry, the converse of Lemma 4.48 also holds. 

Lemma 4.49 Let C be a binary code of length n with covering radius r . Suppose C has 
2-norm N with respect to the subcodes C0 ::::: C n (e;).L and C1 ::::: C \ C0 , where 1 :::; i :::; n . 
Then C[i] has 2-norm N- 1 with respect to the subcodes C0 [i] and CI[i] . 

As a direct consequence, we obtain the following theorem. 

Theorem 4.50 Let C be a binary code of length n that is subnormal with respect to one 
of the hyperplanes (e1).L, . .. , (en).L. Then Cis a normal code. 

In the literature, normal codes are those codes that satisfy the condition of Theorem 4.50. 
Our class of normal codes is strictly larger. To prove this, weneed some additionallemmas. 

Lemma 4.51 Let C be a binary code with covering radius r. Suppose C has 2-norm N 
with respect to subcodes C0 and C1. Then C has covering radius r + 1 and an even 2-norm 
N + 1 or N + 2 with respect to subcodes C0 and C1 . 

Proof: This follows immediately from Lemma 4.15. D 

Lemma 4.52 Let C be a binary code and suppose C has 2-norm N with respect to sub­
codes Co and C1. Suppose C17 has 2-norm N' with respect to subcodes q and C~ . Then 
N':::; N + 1 (and N':::; N, if Nis odd). 

Proof: Codes C and C17 have equivalent extended codes. The result now follows from 
Lemma 4.51. D 

Lemma 4.53 Let C be a binary code of length n with covering radius r. Suppose C has 
2-norm N with respect to theeven weight subcode c. := C n (l).L. Then C[1] has 2-norm 
N' < N with respect to the subcode C.[1] . 
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Proof: It is trivia! that the 2-norm of C with respect to its even/odd weight subcodes 
is odd. From Lemma 4.52 and the fact that N is odd we infer, that code ca has 2-norm 
Na ::; N with respect to the subcode (C.)a =ca n (e1).i, i.e. ca has 2-norm Na ::; N 
with respect to the hyperplane (el).l. From Lemma 4.49 we infer that ca[l.] has 2-norm 
N' =Na- 1 < N with respect to the subcode (C.)a[l]. Codes C and ca differ only in the 
first coordinate, hence C[l] = ca[l] and C.[l] = (C.)a[l]. Consequently, C[l] has 2-norm 
N' < N with respect to the subcode c.[l]. o 

From Lemma 4.53 and Theorem 4.50 we directly obtain the following result. 

Theorem 4.54 Let C be a binary code of length n that is subnormal with respect to one 
of the hyperplanes (e1).L, ... , (en).L , (l).i. Then Cis a normal code. 

Remark 4.55 Several papers consider codes which are abnormal with respect to all hy­
perplanes (e;).l, where 1 ::; i ::; n . Frank! [55] constructed codes with this property with 
covering radius one; Van Wee [85] generalized this construction to hold for arbitrary cover­
ing radii. All these codes have minimum distance one; constructions with higher minimum 
distances have been given by Etzion et al. [28]. Although these codes are all abnormal in 
the 'classica!' sense, i.e. abnormal with respect to the hyperplanes (e;).L, with 1 ::; i ::; n, 
most of these codes can easily be shown to be subnormal with respect to the hyperplane 
(l).L, i.e. they are normal according to our less restrictive definition! Therefore, most of 
the 'abnormal' codes explicitly constructed by the above authors are not abnormal in our 
sens, since they can be mapped via mapping Ij to a code that is normal with respect to 
the hyperplane (e1).l, i.e. is normal in our sense. It should be mentioned, that the con­
structions in papers [28, 55, 85] can be easily adapted to obtain codes that are abnormal 
with respect to all the hyperplanes (e1).l, . .. , (en).l, (l).i. Since we are interested only in 
normal codes, not in abnormal ones, we do not describe these adaptations here. 

The next lemmas prove to be useful later on. 

Lemma 4.56 Code c is SUbnormal with respect to SU beodes Co and c I' iff ca is SUbnormal 
with respect to subcodes c~ and c~ . 

Proof: Codes C and ca have the same covering radius, since they have equivalent ex­
tended codes (cf. Lemma 4.51). The implication now follows from Lemma 4.52. The 
equivalence follows from the fact that the röles of code c and code ca can be interchanged, 
since (Cat = C. 0 

Lemma 4.57 Code Cis normal with respect to the hyperplane (l).i, iff ca is normal with 
respect to the hyperplane (e1).1 . 

Proof: This follows from Lemma 4.56 and the observation that (C. t =ca n (e1).1. 0 
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4.5.3 Some Normal Codes 

In this section we wiJl find a large class of normal binary codes by consiclering codes with a 
small minimum distance and quasi-perfect codes. All results are based upon determining 
the 2-norm of a code with respect to the hyperplane (l)J.. Abnormality of a code with 
respect to this hyperplane imposes certain restrictions on the structure of the code. Com­
binatorial arguments wil! sometimes show that these restrictions cannot be met. We wil! 
use that the 2-norm with respect to the hyperplane (l)J. is odd. 

The next lemma shows that many codes with a smal! minimum distance also have a small 
2-norm. 

Lemma 4.58 Let C be a binary (n, M)r code that is invariant under the translation 
x --+ x + d , for some nonzero vector d E JF~ of odd weight d. Then C has 2-norm at most 
2r + f d/21 with respect to the hyperplane (l)J.. This norm is odd. 

Proof: Let x E JF~. Let d 1, d2 E ~ be words with disjoint supports such that d = 
d 1 + d2. Since d(x + d 1, C) :::=; r, we have x+ d 1 + e E C, forsome vector e of weight 
wt(e) :::; r. Since C = C + d, also x+ d2 + e E C. Vector d has odd weight, so the 
weights of the veetors x + d 1 + e and x + d 2 + e have different parity. It follows, that 
d(x,Ce),d(x,C0 ) :::=; max{wt(d1 + e) , wt(d2 + e)}. If we take wt(d1) = fd/21, then we 
obtain d(x, Ce), d(x, Co) :::; r + f d/21 . Code C has covering radius r and codes Ce and Co 
both have covering radius at most r + r d/21 I hence d(x, Ce)+ d(x , Co) :::; 2r + r d/21. 0 

Theorem 4.59 Let C be a binary code that is invariant under the translation x --+ x+ d, 
forsome nonzero vectordof weight d :::=; 4. Let iE supp(d) . Then Cis normal with respect 
to the hyperplane (e;}J.. 

Proof: We may perroute coordinate positions, so we may assume that the first coordinate 
is in the support of vector d. Code C is normal with respect to the hyperplane (e1}J., iff 
C" is normal with respect to the hyperplane (l}J., cf. Lemma 4.57. Code C" is invariant 
under the translation x--+ x+ a(d). Since the first coordinate is in the support of vector 
d, the weight of a(d) is odd and at most three. The result now follows from Lemma 4.58. 

0 

Corollary 4.60 All binary linear codes with minimum distance d :::=; 4 are normal with all 
coordinates in the support of a codeword of weight at most four acceptable. 

Remark 4.61 This corollary was attributed to C.L.M. van Pul in [45]. In fact , the result 
already follows from [17, Theorem 24], which states Corollary 4.60, but now for d :::=; 3. 
This follows from the following observation: if alllinear codes with odd minimum distance 
d are normal with respect to some suitable coordinate in the support of a codeword of 
weight d, then the same result holds for codes with minimum distance d + 1. (Once again, 
use the technique of mapping code C to code C".) Kilby and Sloane [54, 55] stated that 
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every linear code with distance five is also normal, but this result remains to be proved, as 
was pointed out in [45]. 

The next lemma imposes restrictions on the structure of a quasi-perfect code, whenever it 
is abnormal with respect to the hyperplane (l}.L. This lemma will enable us to prove that 
almost all quasi-perfect codes are normal. 

Lemma 4.62 Let C be an (n, M, d)r quasi-perfect code , i.e. d > 2r- 1. Then C is 
abnormal with respect to the hyperplane (l).L if and only if forsome vector z E Ir;_, the 
set 

Tr(z) := {y E JF~ I z- y E C and wt(y) :Sr+ 1} 

consists of njr words of weight r and with disjoint supports. 

Proof: Assume that Cis abnormal with respect to the hyperplane (l}.L, i.e. d(x,C.) + 
d(x, Co) > 2r+ 1 forsome x E JF~. Let t := d(x, C) and Iet c be a codeword with d(x1 c) = t . 
Moreover I let z E JF~ be any vector with d(z1 x) = r- t and d(z 1 c) = r. Let c' be any 
codeword with d(z 1 c') ::::; r + 1. By the triangle inequality1 we have d(x 1 c) + d(x, c') ::::; 
d(z~c) + d(z,c')::::; 2r + 1. If d(c,c') is odd 1 then d(x,C.) + d(x 1 C0 )::::; 2r + 1, in conflict 
with our assumption. So d( c, c') is even. Hence c = c' or d( C 1 c') = 2r 1 si nee C is a quasi­
perfect code. Consequently, d(z, c') =rand all veetors of Tr(z) have weight rand disjoint 
supports. Moreover, suppTr(z) = {1 1 •• • 1 n }, since d(z +ei, C) = r+ 1 for all i ~ suppTr(z) . 
It follows, that Tr(z) has cardinality njr. 
Conversely, assume that z E JF~ is such that Tr(z) only contains veetors of weight r. Then 
d(z,C.) + d(z ,Co) 2: 2r + 3, so Cis abnormal with respect to the hyperplane (l).L. D 

Remark 4.63 Codes with covering radius one are quasi-perfect codes. For these codes, 
Lemma 4.62 reduces to [40, Theorem 10]. 

Theorem 4.64 All quasi-perfect (n, M, d)r codes with r nare normal with respect to 
the hyperplane (l}.L . 

The next example shows that the constraint r n in Theorem 4.64 cannot be dropped. 

Example 4.65 Let C be the [10, 5, 4]2 code with parity check matrix H defined by 

H=( ~ ~ : : 1 0 1 0 ~ !J. 
1 1 1 1 

1 1 

Let x be any vector with syndrome s = (10000). An inspeetion of matrix H reveals 
that all distances d(x, c) between x and some codeword c E C are two, five, six, or ten. 
Consequently, d(x, C.) + d(x, Co) = 7. It is easily verified that all words y with another 
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syndrome satisfy d(y, C.) + d(y, C0 ) = 5. Code C" is equivalent to the [10, 5, 3]2 code of 
[32, p. 386]. Notice, that Cis equivalent to its dual code Cl., since parity check matrix H, 
with the first row inverted, is a generator matrix for code C. This is the smallest nontrivial 
example of a linear code which is abnormal with respect to the hyperplane (1)1.. (Trivia! 
examples are the even codes.) 

Many quasi-perfect codes have parameters ( n, M, d)r , where r I n. Although we cannot 
apply Theorem 4.64 to prove normality of these codes, we can often establish the same 
result using Lemma 4.62 directly. We wil! show that all ( n, K ( n, 1)) 1 codes are normal, 
as are all codes with d ~ 2r and all linear quasi-perfect codes. Notice that, in order for a 
code C to be normal, it suffices to prove that either C or C" is normal with respect to the 
hyperplane (1)1., cf. Lemma 4.57. 

Theorem 4.66 [40] Let C be an (n , K(n, 1))1 code. Then Cis normal with respect to the 
hyperplane (1)1.. 

Proof: Suppose otherwise. Then B2(z) n C = S1 (z) for some z E JF~, cf. Lemma 4.62. 
Let d(y,z) = 2 and let B1(y) n B 1 (z) ={a, b}. Then C' =CU {y} \{a, b} has covering 
radius one. But now IC'I < ICI = K(n, 1), a contradiction. 0 

Theorem 4.67 Let C be an (n , M, d)r code with d ~ 2r. Then C" is normal with respect 
to the hyperplane (1)1.. 

Proof: Suppose otherwise. Mapping a maps quasi-perfect codes to quasi-perfect codes, 
hence we can apply Lemma 4.62 to C". From Lemma 4.62 we infer that r di vides n and 
that, forsome z E JF~, the setS := { z+c I c E C" and d(z, c) ::::; r+ 1} consistsof njr worcis 
with weight r and disjoint supports. The words of S partition all coordinate positions, 
hence the distances between the wordsof su are 2r -1 and 2r and both distances do occur. 
Since su C a(z) + C, code C has minimum distance 2r- 1. We obtain a contradiction, 
since d ~ 2r. 0 

Theorem 4.68 Let C be a linear quasi-perfect code with parameters [n, k , d]r. Then either 
C or C" is normal with respect to the hyperplane (1)1. . 

Proof: Suppose C and cu are both abnormal with respect to the hyperplane (1)..L. Map­
ping a maps quasi-perfect codes to quasi-perfect codes, hence we can apply Lemma 4.62 
to both codes C and c u. From Lemma 4.62 we infer that r di vides n and that there is a 
vector z such that the setS := {z + c I c E C and d(z,c) ::::; r + 1} consistsof njr worcis 
of weight r and with disjoint supports. Similarly, there is a vector w such that the set 
T := {w + cIcEcu and d(w ,c) ::::; r + 1} consistsof njr wordsof weight rand with 
disjoint supports. The worcis of T partition the coordinate positions, hence the distances 
between the worcis of Tu are 2r - 1 and 2r and both distances do occur. Notice that all 
worcis of T " have weight r or r + 1, if ris odd; if ris even, then allwordsof T" + e 1 have 
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weight r or r + 1. The veetors in set S partition the coordinate positions. Therefore the 
sum of the veetors in setS, L: S, is the all-one vector. Similarly, L: T is the all-one vector. 
Notice that a(w) + T" CC, since w +TC C". 

Using the linearity of codes C and C", we will derive a contradiction. We distinguish two 
cases, depending on the parity of the quotient nfr. 

nfr is even: Code C is a linear code and n/r is even, hence the vector 1 = L: S is a 
codeword of C. Similarly, 1 = L: T is a codeword of C". Consequently, C n C" contains the 
codewords 1 and a(1). Notice that n is even, so a(1) == 1 + e 1 • Since C is a linear code, 
we infer that it has minimum distance one. But this implies that C is normal with respect 
to the hyperpiarre (1).l (cf. Lemma 4.58), in conflict with our assumptions. 

nfr is odd: Code C is a linear code and n/r is odd, hence the vector z and the all-one 
vector are in the same coset of code C, i.e. z + C == 1 + C. Similarly, w + C" == 1 + C" and 
hence a(w) + C = a(1) + C. We .distinguish two cases, depending on the parity of r (or 
n). If ris odd, then a(1) = 1, hence veetorszand a(w) are in the same coset of C. Since 
the code is linear, this implies that T" = S, a contradiction. If r is even, then n is even, 
so a(1) = 1 + e 1 . Consequently, veetorszand a(w) +e1 are in the same coset of C. Since 
the code is linear, this implies that T" + e 1 = S, a contradiction. 0 

Remark 4.69 All normality results mentioned in the papers [28, 48, 85] can easily be 
proved from our theorems, with the help of Corollary 4.52. 

4.5.4 Subnormal Codes 

In the previous section we found a ill.rge class of normal codes. Examples of linear abnormal 
codes are not known. Though it is commonly believed that all linear codes are normal, 
this conjecture has notbeen settled yet . The next result, due to Calderbank [12], is related 
to this conjecture. We include it for completeness. 

Lemma 4.70 [12] Let C be an [n, k]r code. If 2k + 2n-k > 2{(n+ll-f;$tl} + 1, then Cis 
subnormal with respect to some hyperplane. 

Proof: Assume that C is absubnormal with respect to all hyperplanes of C. We may 
assume that all hyperplanes pass through the origin, since any hyperpiarre H of C and its 
complement C \ H define the same partitioning of C. 

For all x E IF'2 define P(x) := { ( c, c') E C x C I d(x, c) + d(x, c') :S 2r + 1 }. Furthermore, 
let V(x) := ({c'- c I (c; c') E P(x)}). 

We say that hyperpiarre H fails to separate P(x), if V(x) c H . Notice that any hyperplane 
that fails to separate P(x), also fails to separate P(y), if x and y are in the same coset 
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of C. This follows, since C is a linear code. By assumption, all hyperplanes of C fail to 
separate P(x), forsome x E IF";. 

We will prove the lemma by estimating in two ways the cardinality of the set 

T :={(x, H) I x E IF";, hyperplane H fails to separate P(x)} . 

Let À be the minimum dimension of V(x) over all x E IF";. Using the fact that any t­
dimensional vector space in IF'; contains 21 

- 1 hyperplanes through the origin, we can 
easily compute the cardinality of set T and find 

jCj (2k -1) $jTI = L{2k-dimV(x) -11 XE .JF2} $ 2n. (2k-,\ -1). (4.3) 

We can rewrite this expression and obtain the following inequality: 

2k + 2n-k $ 2n-,\ + 1. 

Now we estimate the dirneusion of vector space V(x) for all x E IF";. 

( 4.4) 

Let t := d(x, C) and let c be a codeword with d(x, c) = t. A vector z E IF'; such 
that d(u,C) $ d(z,C), for all u with d(u,z) $ 1, is called an orphan. There exists an 
orphan z with d(z, C) = d(z, c) =: u and d(z, x) = u- t, for some t $ u $ r. Define 
T,.(z) := {y E IF'; I z- y E C and wt(y) $ u+ 1}. For all veetors y E T,.(z) we 
have d(x, c) + d(x, z + y) $ 2u + 1, so (c, z + y) E P(x). It follows, that dim V(x) ~ 
dim(T,.(z)) -1. We will estimate the dirneusion of V(x) via an estimate for the dirneusion 
of (T,.(z)). 
Notice that set T,.(z) contains only veetors of weights u and u+ 1. For all i rf. suppT,.(z) 
we have d(z +ei, C) =u+ 1. Si nee z is an orphan, we infer that suppT,.(z) = {1, .. . , n }. 
It follows, that jT,.(z)j ~ f:~~l Moreover, there is a minimal subset T0 of T .. (z) with 
suppTo = { 1, . . . , n}. Si nee this set has cardinality IT0 I ~ f $1, the vector space (T,. ( z)) 

has dirneusion dim(T,.(z)) ~ f$1 ~ f;~:l Consequently, 

r
n- rl dim V(x) ~ À ~ r + 

1 
. 

Substituting estimate (4.5) for À in Equation (4.4), we get the inequality 

2k + 2n-k $ 2{(n+ll-r$ l} + 1. 

This completes the proof. 

(4.5) 

(4.6) 

0 

Corollary 4.71 Let C be an [n, k]r code. lf k/(n + 1) > r/(r + 1) or (n- k)j(n + 1) > 
r /(r + 1), then Cis normal with respecttosome hyperplane. 

4.6 Codes from Geometries and Extension Fields 

In this section we construct covering codes from projective geometries and from codes over 
another alphabet. First, however, we introducesome notions from projective geometry. 
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4.6.1 Fields, Vector Spaces, and Geometries 

The field IF'qm is a vector space of dimension m over IF'q. With respect to a fixed basis, 
each element of IF'qm can be represented as a q-ary vector of length m by means of the 
vector space isomorphism IF'qm ~ (IF'q)m. Via this isomorphism, one can view any vector 
space of dimension k over IF'qm as a vector space of dimension km over IF'q. For conciseness, 
we sometimes exploit these correspondences and consider veetors with coordinates from 
IF'qm, where formally their q-ary representations are appropriate, and vice versa. It should 
always be clear from the context, however, whether a vector with entries from IF'qm should 
be viewed as a q-ary vector or not. 

Consicier the vector space (IF'q)m. A k-dimensional affine subspace or k-fiat is a coset of a 
k-dimensionallinear subspace of (IF'q)m. If k = m-1, we cal! the k-fiat a hyperplane. The 
affine geometry of di mension m over the field lF q is the partially ordered set of all affine 
subspaces of the vector space (IF'q)m . This geometry is commonly denoted by AG(m,q). 
The projective geometry of dimension m over the field IF'q, denoted by PG(m, q), is the 
lattice of alllinear subspaces of (IF'q)m+i. The subspaces of dimension 1 are called (projec­
tive) points, those of dimension 2 are called !i nes, etc. The projective point ( ( x 1 , ••• , Xm+i)} 
in (IF'q)m+l can be represented by any ofthe veetors >.(x1, . .. ,xm+i), where 0 ::j: À E IF'q. 
Therefore the set of projective points in PG(m1 q) can be identified with a maximal set 
of pairwise linearly independent veetors (over IF'q) in (IF'q)m+l, the so-called homogeneous 
representation of the points of PG(m, q) . Projective geometriesof dimension one are called 
projective lines1 those of dimension two are called projective planes1 etc. 

We are mainly interested in certain subsets of affine and projective geometries. 
Let k ;::: 1. A col!ection 5 := {V1 , .•. 1 Vn} of distinct m-dimensional vector spaces in 
(IF'q)km is called a k-independent. s~t 1 if (IF'q)km is spanned by any k distinct vector spaces 
in 5. The collection 5 is called an r-spanning set in (IF'q)km, if each vector in (IFq)kin 
is contained in the linear span of some collection of r distinct vector spaces in 5 . Both 
notionscan also be defined projectively. A k-independent set in (JF q)k is commonly called 
an are in PG( k - 1, q) ( or n-are if it has si ze n). Notice that an n-are in PG( k - 1, qm) can 
be viewed as a k-independent set of size n in (IF'q)km 1 if one considers 1-dimensional vector 
spaces over IF'qm as m-dimensional vector spaces over lF q· The following are examples of 
arcsin PG(k- 11 q) with k;::: 2, cf. [64, p. 323]: 

5 1 := {e1 , • .. ,ek,e1 + · · · + ek} is a (k + 1)-arc in PG(k -1, q); 

5 2 := { (1, x, ... , xk- i) I x E IF'q} U { (01 .. . 1 0, 1)} is a (q+ 1)-arc in PG(k -1, q); 

5 3 := {(1 1 x,x2 ) I x E IF'q} u {(0,0, 1),(0, 11 0)} is a (q + 2)-arc in PG(3,q), 
provided q is even. 

An n-are in PG(k- 1, q) is called a complete are, if it is not contained in any (n + 1)­
arc in PG(k- 11 q) . Complete arcsin PG(O, q) and PG(1, q) are trivia!: they contain all 
points. The maximum cardinality of any complete are in PG(k- 11 q) is denoted by mk( q ). 
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Complete arcsof cardinality m3 (q) in a projective plane are called ovals. For k 2: 3, the 
exact value of mk(q) is known only in a few cases, though it is conjectured [64, p. 328] 
that 

{ 
q +2 

mk ( q) = max { q + 1, k + 1} 
if q = 2m, and k = 3 or k = q - 1, 
otherwise. 

(4.7) 

We wil! only consider projective geometries PG(k -1, q) with k ~ 4. Forthese values of k, 
the conjectured values of mk(q) are exact [13] and can be realized by one of the arcs S 1, 

s2. or s3. 
A line e in PG(k -1,q) is called a passant, tangent, resp. secant onsome setS of points 
in PG(k- 1, q), depending on whether lf n SI is zero, one, resp. (at least) two. Sometimes 
certain relations between lines and arcsin PG(k-1, q) hold. We wil! only consider relations 
in projective planes. Any (2m + 1)-arc S in PG(2, 2m) is contained in a unique oval with 
2m + 2 points. The additional point is called the nucleus of S. An oval in PG(2, 2m) does 
not contain any tangentsin PG(2, 2m). An oval in PG(2, q), q odd, contains q + 1 points; 
moreover, no three distinct tangents on this oval meet in one point of PG(2, q). 

Now we are ready to describe a construction of covering codes using projective geometries. 

4.6.2 Codes from Projective Geometries 

Linear codes with covering radiusrand r-spanning sets in projective geometries are equiv­
alent objects: the columns of a parity check matrix of a q-ary [n, n - m]r code form an 
r-spanning set of points in PG( m - 1, q), and vice versa. As an example of a 2-spanning 
set in PG(3, 2m) we consider a geometrical construction by Brualdi et al. [8]. 

Theorem 4.72 Let q = 2m. Let V be a plane in PG(3, q) and let 0 be an oval in V. 
Con si der a line e in PG(3, q) through some point N of 0, e not in V. Th en S := ( 0 u e) \ N 
is a 2-spanning set in PG(3, q) with 2q + 1 points. 

Proof: Let x be any point of PG(3, q) not inS. We distinguish two cases, depending on 
whether x is in V or not. If x is in V, then x is on (q/2) + 1 secants of 0, since V does not 
contain any tangents on 0. It follows, that x is on asecant of 0\ N (if x =I= N) or on the 
line e (if x= N). If x is not in V, then the plane W determined by x and e intersects V 
in a line e' which contains N and hence another point y of 0, because V does not contain 
any tangents on 0 . The line f" through x and y is contained in W, hence it intersects 
the line e in a point z =I= N. lt follows that x is on the secant through y and z. Hence all 
points of PG(3, q) are on a line determined by two points of S. 0 

Remark 4.73 Theorem 4.72 gives a 2-spanning set with 2q+ 1 points in PG(3,q), where 
q is an even prime power. A slight modification of this theorem yields this result for odd 
prime powers q as wel! (unless q = 3). We leave out the details. Notice that the trivia! 
construction (taking two nonintersecting lines) gives a 2-spanning set with 2q + 2 points. 



4.6 Codes from Geometries and Extension Fields 93 

4.6.3 Codes from Codes over Extension Fields 

In this section we construct covering codes from codes over another alphabet. 

Let 7-lm ( q) be the q-ary Hamming code of Jength a = ( qm - 1) I ( q- 1). The vector space JF"; 
can be partitioned into qm translatesof 7-lm(q). We denote this partition by IF:I1tm(q). 
Let f be any bijeetion from IF:I1tm(q) to the field GF(qm), e.g. the mapping from IF; 
to the qm possible syndromes of 7-lm(q). Notice that function f has the property that 
f ( B 1 (x)) = IFq~ for all x E JF~, si nee the Hamming code and i ts translates all have 
covering radius one. Bijeetion f cao be used to map codes over the extension field lFq~ to 
q-ary codes with the same covering radius. 

Lemma 4.74 Let C be a code of length n over IFq~ with covering radius r. Let a = 
( qm - 1) I ( q - 1) and let f be any bijeetion from IF~ 17-lm ( q) to the field IFq~ . Th en code 
7J defined by 

(4.8) 

has covering radius r. 

Proof: Let (x1 , ... , xn) E (IF~t and Jet y := (f(x1), ... , f(xn)) . F'unction f has the 
property that f(B1(x)) = IFq~ for all x E JF~. It follows, that d((x1 , . •• ,xn),7J) 
d(y,C) ~ r. 0 

Remark 4.75 lt is clear that if C is linear and if f is a linear function, then code 7J 
defined by (4.8) is linear. In that case this lemma reduces to [8, Lemma 3.1]. 

In Lemma 4.74 we used Hamming codes and a bijective function f to define a mapping 
from codes over the extension field IFq~ to q-ary codes with the same covering radius. 
The proof of th!s lemma only uses a certain property of function f, viz. the property 
that f ( B 1 (x)) = IFq~ for all x E IF; . Therefore one can also apply this construction 
using instead of Hamming codes other codes with covering radius one: suppose IF: is 
the union of k subcodes C0 , ... ,Ck_1, each with covering radius one. For all x E IF; let 
f(x) := {0 ~i < k I x E C;}. We eaU f the characteristic function of C0 , . .. , Ck+ Notice 
that mapping f has the property that uj(B1 (x))= 7l.~ç for all x E IF: . (lf k = qm, then we 
identify elements of 7l.~ç with those of IFq~.) Characteristic function f cao be used to map 
mixed codes to q-ary codes with the same covering radius, thus generalizing Lemma 4.74. 

Lemma 4. 76 Let C Ç 7l.k, x · · · x 7l.k" be a mixed code with covering radius r. For all 
i, 1 ~ i ~ n, let IF~; be the union of ki subcodes c)0>, . . . , c)k;-i) with covering radius 1 and 
let fi be the characteristic function associated with these subcodes. Then code 7J defined 
by 

( 4.9) 

has covering radius r. 
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Proof: This follows directly from the observation that for all i, 1 :::; i :::; n, characteristic 
function /; has the property that Uf;(B1(X;)) = ll~c, for all x E JF~'· D 

Remark 4. 77 Obviously, the construction in Lemma 4. 76 cao be straightforwardly gener­
alized to yield mappings from mixed codestoother mixed codes. Lemma 4.76 was used by 
0stergard [66] to obtain a (10, 120)1 code from a mixed code C Ç JF4 x (JF2 )1 with cardinal­
ity ICI = 60 and covering radius 1, which he had found by simulated annealing. The same 
construction was used by Etzion et al. [27, Construction A] to obtain codes with covering 
radius two from eertaio perfect two-error-correcting mixed codes in IF2m-l x (JF2 ) 2

m (cf. 
also Remark 4.23). 

Example 4.78 [8] Let q = 2m. Let S be the 4 x (2q + 1) matrix with as columns the 
points of the 2-spanning set of Theorem 4.72. Matrix S is a parity check matrix of a 
q-ary code with parameters [2q + 1, 2q - 3, 3]2. Let a be a primitive element of IF2m. 

The matrix H = (1 a · · · aq-2 ) is a parity check matrix of the binary Hamming code of 
length q- 1. Let f be the linear function defined by f(x) = xHT for all x E JFr 1

. From 
Lemma 4.74 we infer that code V defined by (4.8) has parameters [n,n- 4m,3]2, with 
n = (2m+l + 1)(2m- 1). It can easily be verified that the Kronecker product S ® H is a 
parity check matrix of code V. Code V is equivalent to the code with parity check matrix 
S' := H ® S =(SI aS I · · · I a 9-

2S). 

4. 7 Piecewise Constant Codes 

In this section we construct covering codes from codes with a mixed alphabet. 

First we give some definitions. 
Let C Ç Vn := ll~c, x · · · x ll~cn . If not all k; are the same, then C is called a mixed code. 
The Manhattan distance dM(x,y) between two words x,y E Vn is defined by dM(x,y) := 
I: lx;- y;l. The Manhattan radius TM of codeCis the maximum value 'of dM(x,C) over 
i 

all words x E Vn. Here dM(x,C) := min{dM(x, c) I c E C}. Notice, that if all k;'s are two, 
then the Manhat.tan distance and radius correspond to the usual definition of Hamming 
distance and covering radius. 

Now we are ready to describe the construction of a class of codes introduced by Cohen et 
al. [17], the so-called piecewise constant codes. The examples are from the same paper. 

Lemma 4.79 Let C Ç Vn := ll~c,+l x · · · x llkn+i· Let f be the weight function, i.e. 
f(x) := wt(x) . Then code V defined by 

( 4.10) 

has covering radius r(V) = rM(C). 
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Proof: Let (x1 , • •. ,x") E JF!• x· · · x JF!n and let y := (j(xi), .. . ,j(xn)). For all 
i, 1::; i::; n, function f has the property that f(BI(x;)) = {wt(x;) -1,wt(x;),wt(X;) + 
1} n {0, ... ,k;} for all X; E JF!'· It follows, that d((x),•• .,xn), V)= dM(y,C)::; TM. 0 

Example 4.80 Let C Ç 71.3 x 71.4 be defined by C := { (0, 0), (0, 3), (1, 0), (2, 2)}. The 
codewords of this code can be depicted in the two-dimensional array of Figure 4.3 with as 

j-+ 
0 1 

0 (!) 3 

1 1 @ 6 

2 1 3 

2 

3 

6 

® 

3 

(!) 
2 

1 

(00,000) 
(00,111) 
(10,000) 
(01,000) 
(11,011) 
(11,101) 
(11,110) 

Figure 4.3: Depietion of code C and the corresponding (5, 7)1 code V. 

(i, j)-th en try ( :) · ( D. The parameters of the corresponding piecewise constant code V 
can easily be determined from this array. Kalbfieisch and Stanton [78] proved - by linear 
programming techniques- the uniqueness of the (5, 7)1 code shown in Figure 4.3. 

Example 4.81 Let C Ç 71.4 x 7l4 be defined by C := {(0, 1), (1 , 3), (2, 0), (3, 2)}. As in 
the previous example, this code can be depicted in the two-dimensional array shown in 
Figure 4.4. From this figure we see that the corresponding piecewise constant code V 

j-+ 
0 1 2 3 

0 1 ® 3 1 

1 3 9 9 ® 
1 2 ® 9 9 3 

3 1 3 ® 1 

Figure 4.4: Depietion of mixed code C. 

has parameters (6, 12, 2)1. In fact, one can show by linear programming that this code 
is optima! [78]. By inspeetion we see that V can be partitioned into the following three 
subcodes: 

VI:= {(000, 100), (111, 011), (100, 111), (011,000)}, 
v2 := {(ooo, o10), (111, 101), (010, 111), (1o1, ooo)}, 
v3 := {(ooo, oo1), (111, 110), (ooi, 111), (110, ooo)}. 
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Each of these subcodes has covering radius two, since each subcode is equivalent to a 
translate of the linear code ((111, 000), (000, 111)). 

4.8 Codes from Block Designs 

In this section we show how designs can be used to construct covering codes. We give a 
construction for an (11, 192)1 code. This construction is due to Cohen et al. [17]. A similar 
construction was used in [64, p. 72] to construct an (11, 144, 3) code. Here we show that, 
in fact, the latter code occurs as a subcode of the covering code. We identify codeworcis 
with subsets by means of their supports. 

Consicier the Steiner system with parameters 5-(12, 6, 1). This is a self-complementary 
design, i.e. if a block occurs in the design, then its complement also occurs. Let B be the 
collection of 132 blocks of this design. Different blocks interseet in at most four points, 
since any collection of five points is contained in exactly one block. Thus, blocks have 
mutual Hamming distance at least four. 

Let IC be any collection of six disjoint pairs of points, tagether with their complements. 
This code has minimum distance four. 
The code C := B U IC has minimum distance four as wel!, since all codeworcis of B have 
weight six and all codeworcis of IC have weight two or ten. Thus we obtain a (12, 144, 4) 
code. 

Now we determine the covering radius of this code and a related code. 
Let C be the collection {x= (xL, xR) E JF~ x JF~ I wt(x) = 2, wt(xL) = 0 or wt(xR) = 0}, 
tagether with their complements. Let x = (xL, xR) be any word of JF~2 , partitioned into 
two parts of length six. Since B is a 5-(12, 6, 1) design, any word of weight four, five, 
or six has distance at most two to code B. Any word of weight zero, one, or two has 
distance at most two to code IC. Now consider any word x = (xL, xR) of weight three. 
Since wt(x) = 3, either 0 ::=; wt(xL) ::=; 1 or 0 ::=; wt(xR) ::=; 1. In both cases d(x, C) = 1. 
Furthermore, d(x, IC) ::=; 3. Since the codes B, IC, and C are self-complementary, it follows 
that code C has covering radius three and that the code V := B U C has covering radius 
two. Code V has parameters (12, 192, 2)2 and contains C as a subcode, for suitable choice 
of IC. 

All the words of codes C and V have even weight, hence puncturing these codes on any 
coordinate decreases the covering radius by one. Thus we obtain an (11, 192, 1)1 code 
containing an (11, 144, 3)2 code as subcode. 
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Notation 

Our notation follows [58,64j. For elementary notation from coding theory we refer to 
Chapter 1. Below we mention some notations that are frequently used throughout this 
thesis or that may not be standard. 

(x,y) 
0, 1, ei 

In, 0, J 
A®B 
A(n, d) 
A(n,d,w) 

d[n,kj 
K(n, r) 
t[n, kj 
l(m, r) 

n;j(m, r) 

J.Ld(n, r) 

'lim 
'R..(r,m) 
Pm 
C., Co 
C[ij 
CjC' 

c1 Ei1 c2 
J.(v,k,t) 
fc(v,k,t) 
US 
L:S 
U+V 
Kk(x; n) 

standard inner product of veetors x and y 
all-zero vector, all-one vector, ith unit vector 
n x n identity matrix, all-zero matrix, all-one matrix 
kronecker product of matrices A and B 
maximum size of any code of length n with minimum distance d 
maximum size of any constant weight code of length n with all 
weights w, and minimum distance d 

maximum distance achievable by any [n, kj code 
minimum size of any code of length n with covering radius r 
minimum covering radius achievable by any [n, kj code 
minimumlengthof any linear code with redundancy mand covering 
radius r 
minimum length of any systematic code with redundancy m, cov­
ering radius r, and distance d 

minimum density of any code with length n, covering radius r, and 
minimum distance d 
Hamming code of length n = 2m - 1 
rth order Reed-Muller code of length 2m 
Preparata code of length 2m - 1, m even 
even, resp. odd, weight subcode of code C 
punctured code of C, punctured on ith coordinate 
a code C that is the union of translates of code C' 

amalgamated direct sum of codes cl and c2 
maximum size of any t-(v, k, 1) packing design 
minimum size of any t-(v, k, 1) covering design 
union of the elements of set S 
sum of elements of set S 
sum of sets U and V 
Krawtchouk polynomial of degree k 
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Samenvatting 

Dit proefschrift beschrijft de resultaten van mijn onderzoek op het gebied van de code­
ringstheorie. Het betreft onderzoek naar overdekk.ingscodes. Deze codes kunnen worden 
gebruikt voor het benaderen van willekeurige digitale informatie door een eindig aantal 
codewoorden, zonder dat hierdoor al te grote fouten optreden. Door dit benaderingspro­
ces kan informatie efficiënter en dus korter worden beschreven. Dit proces introduceert 
informatieverlies. Door een geschikt ontwerp van overdekkingscodes is het mogelijk het 
maximale informatieverlies, gegeven door de overdekkingsstraal, te beperken. 
In hoofdstuk 1 behandelen we in het kort enkele onderwerpen uit de coderingstheorie 
welke in de rest van het proefschrift van pas komen. Tevens bewijzen we een lemma dat 
ons in staat stelt vele resultaten uit de coderingstheorie op eenvoudige en uniforme wijze te 
bewijzen. De bovengrenzen voor de overdekkingsstraai welke door Tietäväinen en Delsarte 
werden behaald blijken als speciaal geval op te treden. 
In hoofdstuk 2 behandelen we ondergrenzen voor het aantal codewoorden in overdekkings­
codes. We laten zien dat de meeste bekende grenzen voor deze codes een directe analogie 
hebben met een bekende bovengrens uit de coderingstheorie, welke reeds in de jaren zestig 
door Johnson werd bewezen. Een belangrijk resultaat van dit hoofdstuk is een verbetering 
van de zgn. Van Wee ondergrens voor binaire lineaire codes. Veel andere resultaten geven 
verbanden aan tussen bekende grenzen voor foutencorrigerende codes en overdekkingsco­
des. 
In hoofdstuk 3 bestuderen we ondergrenzen voor het aantal codewoorden in een lineaire 
code aan de hand van de structuur van zijn zgn. duale code. We laten zien dat de para­
meters van een overdekkingscode eisen opleggen aan de gewichtsverdeling en de doorsnede 
van woorden in die duale code. Een combinatie van deze ontwerpeisen met technieken 
uit de theorie van foutenverbeterende codes levert op dat al te zuinige overdekkingscodes 
vaak niet mogelijk zijn. Als toepassing van de theorie bewijzen we op eenvoudige wijze een 
vermoeden van Brualdi, Pless en Wilson. 
In hoofdstuk 4 komen constructies voor zuinige overdekkingscodes aan de orde. Uitgangs­
punt bij deze constructies zijn enkele constructies die bij het ontwerp van foutenverbete­
rende codes al hun vruchten hebben afgeworpen. We laten zien dat deze constructie ook 
toegepast kan worden bij het ontwerpen van goede overdekkingscodes, d.w.z. overdek­
kingscodes met relatief weinig codewoorden. Een deel van de resultaten was reeds bekend, 
maar wordt hier op een nieuwe manier gepresenteerd met eenvoudiger bewijzen. Het be­
langrijkste resultaat van het hoofstuk is een eenvoudige constructie van een klasse van 
overdekkingscodes met overdekkingsstraai twee, minimum afstand vier, en een relatieve 
dichtheid die dicht bij 1 ligt, hetgeen vrijwel optimaal is. De beste tot nu toe bekende 
constructie leverde codes op met een relatieve dichtheid van 9/8. Verder geven we o.a. een 
generalisatie van het begrip normale code, die ons in staat stelt de meeste eigenschappen 
van deze codes op een eenvoudige wijze te bewijzen. 
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Gavering Codes 
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1. In 1978, MeElieee [1] introduced a probabilistic public-key cryptosystem based on 
error-correcting codes. This scheme allows implementations which are two to three 
orders of magnitude faster than RSA [2]. It has two major drawbacks, however: the 
key size is quite large and, in order for the scheme to be computationally secure, an 
information rate close to ! is necessary. 
Covering codes provide an excellent method for data reduction of the ciphertext, 
thus effectively increasing the information rate. For the optimization of the MeElieee 
scheme discussed in [3] this results in an increase of the information rate of the 
original scheme (0.619) by over 20%, without affecting the system's security or the 
implementation 's efficiency. 

[1] R.J. McEliece, "A Public-Key Cryptosystem Based on Algebraic Coding The­
ory," DSN Progress Report 42-44, JPL Pasadena, pp. 114-116, 1978. 

[2] Contemporary Cryptology - The Science of Jnformation Integrity, G.J. Sim­
mons, Ed., New York: IEEE Press, 1991, pp. 521-522. 

[3] J. van Tilburg, "On the MeElieee Public-Key Cryptosystem," in Advances in 
Cryptology - CRYPT0'88, Lecture Notes in Computer Science, Vol. 403, 
S. Goldwasser, Ed., New York: Springer-Verlag, 1989, pp. 119-131. 

2. Algebraic cryptosystems can be described as follows: let C c JF~ be a block code, 
let :F : JF~ --+ C be a bijection, and let Z C JF~ be a nonempty set of error patterns. 
A message m E JF~ is encrypted as the ciphertext c E JF~ as follows: 

c = :F(m) + z, 

where z is selected at random from the set Z of error patterns. Decryption of the 
ciphertext c is done by removing the error pattem z using a decoding algorithm for 
code C and subsequently applying :F-1

• 

The MeElieee scheme is an algebraic cryptosystem that uses an error-correcting code 
C and a maximum-likelihood decoding algorithm for this code. In [1], Rao and Nam 
proposed a private-key algebraic cryptosystem, using a linear mapping :F and a syn­
drome decoding algorithm. They claim that their system provides high information 
rates, smal! block lengths, efficient encoding/decoding, while being secure against a 
chosen-plaintext attack. This claim is false: it was shown in [2] that the claimed work­
factor W of a chosen-plaintext attack can be reduced to approximately VIW. The 
following table summarizes the cost of the chosen-plaintext attack (where N = IZI): 



Rao and Nam [1] Struik and Van Tilburg [2] 
key size (bits) 
encryptions ( average) 
bit operations 
memory needed (bits) 

O(nN) 
O(NlogN) 
D.(knNk) 
O(nN) 

O(nN) 
O(kNlogN) 

O(knN2 log N) 
O(nN) 

Using the Birthday Paradox, one can replace the number N by ..;N, both in the 
workload and in the average number of encryptions needed . 

[1] T.R.N. Rao, K-H. Nam, "Private-Key Algebraic Cryptosystems," in Advances in 
Cryptology - CRYPT0'86, Lecture Notes in Computer Science, Vol. 263, A.M. 
Odlyzko, Ed., New-York: Springer-Verlag, 1987, pp. 35-48. 

[2] R. Struik, J. van Tilburg, "The Rao-Nam Scheme is Insecure Against a Chosen­
Plaintext Attack," in Advances in Cryptology - CRYPT0'87, Lecture Notes in 
Computer Science, Vol. 293, C. Pomerance, Ed., New York: Springer-Verlag, 
1988, pp. 445-457. 

3. In [1,2] modifications are stuclied of the Rao-Nam scheme, which was shown to be vul­
nerable to a chosen-plaintext attack (see previous statement). In his Ph.D. disserta­
tion [1], Denny proposes a private-key algebrak cryptosystem using a Preparata code 
with associated maximum-likelihood decoding algorithm and a nonlinear mapping :F. 
The main result of [1] is the claim that this scheme allows efficient encodingfdecoding 
and is secure against a chosen-plaintext attack, even for small block lengths. This 
claim is false: it was shown in [3] that the claimed workfactor W of a chosen-plaintext 
attack can be reduced to approximately VIW, where t ~ 2n/ log n. The following ta­
ble summarizes the cost of the chosen-plaintext attack (where N = IZI): 

key size (bits) 
encryptions ( average) 
bit operations 
memory needed (bits) 

Denny [1] 
O(nN) 

O(NlogN) 
D.(n2k) 
O(nN) 

Struik [3] 
O(nN) 

O(kNlogN) 
O(nlogn) 
O(nN) 

Using the Birthday Paradox and the particular form of mapping F proposed in [1], 
the required workload can even be reduced to only O(n3 ) operations. 

[1] W.F. Denny, "Encryptions Using Linear and Non-Linear Codes: Implementa­
tion and Security Considerations," Ph.D. Dissertation, The Center for Advanced 
Computer Studies, University of Southwestern Louisiana, Lafayette, 1988. 

[2] T.R.N. Rao, K-H . Nam, "Private-Key Algebraie-Code Encryptions," IEEE 
Trans. Inform. Theory, Vol. IT-35, pp. 829-833, July 1989. 

[3] R. Struik, "On the Rao-Nam Scheme Using Nonlinear Codes," in Proceedings 
of the 1991 IEEE International Symposium on Information Theory, Budapest, 
24-28 June, 1991, p. 174. 



4. The structure of the (23, 215 , 3)2 code discovered by Etzion et al. [1] and that of the 
(23, 212 , 7) Golay code are quite similar: shortening either code yields the (16, 28 , 6) 
Nordstrom-Robinson code and Hamming codes. This strongly suggests that the 
(23, 215 , 3)2 code can be partitioned into eight translates of the binary Golay code. 
Nevertheless, this is not possible. 

[1] T. Etzion, G. Greenberg, "Constructions for Perfect Mixed Codes and Other Cov­
ering Codes," IEEE Trans. Inform. Theory, Vol. IT-39, pp. 209-214, January 
1993. 

5. Davydov et al. [1] describe a method for constructing new binary linear covering codes 
from old ones. Their method can be generalized to arbitrary codes using concepts 
from projective geometry. 

It is well-known that each point p of the projective space PG(r - 1, qm) can be 
identified with an m-dimensional vector space P over IF'q. Let V(p) be the matrix 
with as columns the qm points of Pand let V*(p) be the matrix with as columns ·the 
(qm -1)/(q-1) projective points of P. Let {p1, ... , Pn} be ann-arein PG(r -1, qm). 
Define P; := V(p;) for all i, 1 ::; i::; n, and let Poo := (V*(p,) 1- .. 1 V*(Pr)). 

The construction given in [1] can now be generalized as follows: let C be a q-ary code 
of length n with covering radius r. Let 'D be the q-ary code defined by 

n 

'D := {(x,, ... , Xn, xoo) I (!(x,), ... , J(xn)) E C and L x;Pr + xooP~ = 0}, 
i= I 

where f(y) is the sum of the coordinates of y. Then code 'D has covering radius r 
and cardinality lVI = q-mriCiqN-n, where N = qmn + r(qm- 1)/(q- 1). 

[1] A.A. Davydov, A.Yu. Drozhzhina-Labinskaya, "Constructions, Families and Ta­
bles of Binary Linear Covering Codes," to appear in IEEE Trans. Inform. The­
ory. 

6. Let C be a binary (n, M)r code. The function 1r : {1, ... , n} ---+ IN U {0} induces 
a partition of the coordinate positions of C. Partition 1r is called sufficient for C, 
if for all x E IF~, there exists a vector e E IF~ with x- e E C, wt(e) ::; r, and 
wt(e) = 17r(supp(e))l. The effective length ne of code C is the minimum number of 
blocks in any partition 1r that is sufficient for C. 

The effective length enables us to improve constructions by Davydov et al. [1] and 
Honkala [2]: 

Let C be a binary code of length n with covering radius 2 and effective length n •. 
Then there exists a code C' of length N with covering radius 2 and cardinality 
IC'I = 2-2miCI2N-n, where 

{ 

(n+1)2m-1 
N _ (n + 2)2m- 2 

- (n+2)2m-3 
(n + 2)2m- .J2ffi- 1 

if ne ::; 2m ::; n, 
if n. ::; 2m + 1' 
if n. ::; 2m' 
if n. ::; 2m and m is even. 



Moreover, there exists a code C' of length N = 2n + 2 with covering radius 2 and 
cardinality IC' I= ICI22+(n-n.)l2n• /3J. 

[1] A.A. Davydov, A.Yu. Drozhzhina-Labinskaya, "Constructions, Families and Ta­
bles of Binary Linear Covering Codes," to appear in IEEE Trans. Inform. The­
ory. 

[2] l.S. Honkala, "A New Construction for Covering Codes," IEEE Trans. Inform. 
Theory, Vol. IT-34, pp. 1343-1344, September 1988. 

7. Let n*(m, r) be the smallest lengthof any systematic code with redundancy mand 
covering radius r. Then 

{ 

~2m- 1 if mis even, 

n*(2m, 2) ~ ~2m- 1 + ( )2m+l- 2) if m = 1(mod 4), 

~2m- 1 + (2v'2m+l - 2) if m = 3(mod 4). 

This supplements Construction 4.22 of Chapter 4 of this Ph.D. dissertation. 

8. Contrary to popular belief among some coding theorists, the Amalgamated Direct 
Sum construction produces bad results in genera!. Therefore, the continuous quest 
for characterization of normal codes, for which the only application so far has been 
the Amalgamated Direct Sum construction, is remarkable. 

9. The use of group algebras in characterization proofs of perfect code configurations, 
although elegant, is not necessary. 

10. In the long term, the main social impact of computerization will not so much be 
the replacement of Iabour by machinery, but- potentially much more dangerous to 
western society - the replacement of expensive western Iabour by cheaper Iabour 
from outside Europe, especially in the service industry. 

[1] Robert B. Reich, "The Workof Nations: Preparing Ourselves for 21st Century 
Capitalism," New York: Alfred A. Knopf, 1991/2. 

11. De studiebeurs is in feite een sociale uitkering en dient daarom ten laste van de 
begroting van het Ministerie van Sociale Zaken te komen. 


