We study the out-of-equilibrium large time dynamics of a gaussian polymer
chain in a quenched random potential. The dynamics studied is a simple Langevin
dynamics commonly referred to as the Rouse model. The equations for the
two-time correlation and response function are derived within the gaussian
variational approximation. In order to implement this approximation faithfully,
we employ the supersymmetric representation of the Martin-Siggia-Rose dynamical
action. For a short ranged correlated random potential the equations are solved
analytically in the limit of large times using certain assumptions concerning
the asymptotic behavior. Two possible dynamical behaviors are identified
depending upon the time separation- a stationary regime and an aging regime. In
the stationary regime time translation invariance holds and so is the
fluctuation dissipation theorem. The aging regime which occurs for large time
separations of the two-time correlation functions is characterized by history
dependence and the breakdown of certain equilibrium relations. The large time
limit of the equations yields equations among the order parameters that are
similar to the equations obtained in the statics using replicas. In particular
the aging solution corresponds to the broken replica solution. But there is a
difference in one equation that leads to important consequences for the
solution. The stationary regime corresponds to the motion of the polymer inside
a local minimum of the random potential, whereas in the aging regime the
polymer hops between different minima. As a byproduct we also solve exactly the
dynamics of a chain in a random potential with quadratic correlations.Comment: 21 pages, RevTeX