47 research outputs found
Aging dynamics in a colloidal glass of Laponite
The aging dynamics of colloidal suspensions of Laponite, a synthetic clay, is
investigated using dynamic light stattering (DLS) and viscometry after a quench
into the glassy phase. DLS allows to follow the diffusion of Laponite particles
and reveals that there are two modes of relaxation. The fast mode corresponds
to a rapid diffusion of particles within "cages" formed by the neighboring
particles. The slow mode corresponds to escape from the cages: its average
relaxation time increases exponentially fast with the age of the glass. In
addition, the slow mode has a broad distribution of relaxation times, its
distribution becoming larger as the system ages. Measuring the concomitant
increase of viscosity as the system ages, we can relate the slowing down of the
particle dynamics to the viscosity.Comment: 9 pages, 8 Postscript figures, submitted to Phys. Rev.
Aging in a topological spin glass
We have examined the nonconventional spin glass phase of the 2-dimensional
kagome antiferromagnet (H_3 O) Fe_3 (SO_4)_2 (OH)_6 by means of ac and dc
magnetic measurements. The frequency dependence of the ac susceptibility peak
is characteristic of a critical slowing down at Tg ~ 18K. At fixed temperature
below Tg, aging effects are found which obey the same scaling law as in spin
glasses or polymers. However, in clear contrast with conventional spin glasses,
aging is remarkably insensitive to temperature changes. This particular type of
dynamics is discussed in relation with theoretical predictions for highly
frustrated non-disordered systems.Comment: 4 pages, 4 figure
Chaotic, memory and cooling rate effects in spin glasses: Is the Edwards-Anderson model a good spin glass?
We investigate chaotic, memory and cooling rate effects in the three
dimensional Edwards-Anderson model by doing thermoremanent (TRM) and AC
susceptibility numerical experiments and making a detailed comparison with
laboratory experiments on spin glasses. In contrast to the experiments, the
Edwards-Anderson model does not show any trace of re-initialization processes
in temperature change experiments (TRM or AC). A detailed comparison with AC
relaxation experiments in the presence of DC magnetic field or coupling
distribution perturbations reveals that the absence of chaotic effects in the
Edwards-Anderson model is a consequence of the presence of strong cooling rate
effects. We discuss possible solutions to this discrepancy, in particular the
smallness of the time scales reached in numerical experiments, but we also
question the validity of the Edwards-Anderson model to reproduce the
experimental results.Comment: 17 pages, 10 figures. The original version of the paper has been
split in two parts. The second part is now available as cond-mat/010224
De fysica van polymere materialen
Rede, uitgesproken ter gelegenheid van de aanvaarding van het ambt van buitengewoon hoogleraar in de fysica van polymere materialen aan de Universitelt Twente op donderdag 22 januarì 1987 door Dr.lr. L.C.E. Struik
Volume relaxation in polymers
Volume relaxation and related phenomena in the glass transition of polymers are discussed. During volume relaxation, the molecular transport mobility changes. First, this in principle implies non-linearity of the volume relaxation process itself. The apparent contradiction of this fact with the linearity domain found experimentally by Goldbach (1) could be explained. Secondly, during volume relaxation the viscoelastic processes change their location in time scale, due to the change in molecular transport mobility. This is demonstrated by experimental results for poly(styrene). The change of mechanical properties during volume relaxation strongly increased with a decrease in frequency of the mechanical deformation. Consequently one should also be careful with mechanical measurements in the glass transition range, especially when performed at lower frequencies. A semi-automatic method to perform simultaneously a large series of isothermal volume relaxation measurements is presented. © 1966 Dr. Dietrich Steinkopff Verlag
Logarithmic clock, an electronic device for producing a discrete logarithmic time scale
An electronic device for producing a discrete logarithmic time scale has been developed. It produces a series of electrical pulses at time