356 research outputs found

    Swift follow-up of IceCube triggers, and implications for the Advanced-LIGO era

    Full text link
    Between 2011 March and 2014 August Swift responded to 20 triggers from the IceCube neutrino observatory, observing the IceCube 50% confidence error circle in X-rays, typically within 5 hours of the trigger. No confirmed counterpart has been detected. We describe the Swift follow up strategy and data analysis and present the results of the campaign. We discuss the challenges of distinguishing the X-ray counterpart to a neutrino trigger from serendipitous uncatalogued X-ray sources in the error circle, and consider the implications of our results for future strategies for multi-messenger astronomy, with particular reference to the follow up of gravitational wave triggers from the advanced-era detectors.Comment: Accepted for publication in MNRAS. 18 pages, including 8 figures and 4 tables; two of which are landscape-oriente

    Patterns in the multi-wavelength behavior of candidate neutrino blazars

    Full text link
    Motivated by the identification of the blazar TXS 0506+056 as the first promising high-energy neutrino counterpart candidate, we search for additional neutrino blazars candidates among the Fermi-LAT detected blazars. We investigate the multi-wavelength behavior from radio to GeV gamma rays of blazars found to be in spatial coincidence with single high-energy neutrinos and lower-energy neutrino flare candidates. In addition, we compare the average gamma-ray emission of the potential neutrino-emitting sources to the entire sample of gamma-ray blazars. We find that neutrino-emitting blazar candidates are statistically compatible with both hypothesis of a linear correlation and of no correlation between neutrino and gamma-ray energy flux.Comment: accepted for publication by Ap

    UV to near-IR observations of the DART-Dimorphos collision

    Full text link
    The impact of the Double Asteroid Redirection Test (DART) spacecraft with Dimorphos allows us to study asteroid collision physics, including momentum transfer, the ejecta properties, and the visibility of such events in the Solar System. We report observations of the DART impact in the ultraviolet (UV), visible light, and near-infrared (IR) wavelengths. The observations support the existence of at least two separate components of the ejecta: a fast and a slow component. The fast-ejecta component is composed of a gaseous phase, moving at about 1.6 km/s with a mass of <10^4 kg. The fast ejecta is detected in the UV and visible light, but not in the near-IR zz-band observations. Fitting a simplified optical thickness model to these observations allows us to constrain some of the properties of the fast ejecta, including its scattering efficiency and the opacity of the gas. The slow ejecta component is moving at typical velocities of up to about 10 m/s. It is composed of micrometer-size particles, that have a scattering efficiency, at the direction of the observer, of the order of 10^-3 and a total mass of about 10^6 kg. The larger particles in the slow ejecta, whose size is bound to be in the range between ~1 mm to ~1 m, likely have a scattering efficiency larger than that of the pre-impact Didymos system.Comment: Submitted to MNRA

    Observational and Physical Classification of Supernovae

    Full text link
    This chapter describes the current classification scheme of supernovae (SNe). This scheme has evolved over many decades and now includes numerous SN Types and sub-types. Many of these are universally recognized, while there are controversies regarding the definitions, membership and even the names of some sub-classes; we will try to review here the commonly-used nomenclature, noting the main variants when possible. SN Types are defined according to observational properties; mostly visible-light spectra near maximum light, as well as according to their photometric properties. However, a long-term goal of SN classification is to associate observationally-defined classes with specific physical explosive phenomena. We show here that this aspiration is now finally coming to fruition, and we establish the SN classification scheme upon direct observational evidence connecting SN groups with specific progenitor stars. Observationally, the broad class of Type II SNe contains objects showing strong spectroscopic signatures of hydrogen, while objects lacking such signatures are of Type I, which is further divided to numerous subclasses. Recently a class of super-luminous SNe (SLSNe, typically 10 times more luminous than standard events) has been identified, and it is discussed. We end this chapter by briefly describing a proposed alternative classification scheme that is inspired by the stellar classification system. This system presents our emerging physical understanding of SN explosions, while clearly separating robust observational properties from physical inferences that can be debated. This new system is quantitative, and naturally deals with events distributed along a continuum, rather than being strictly divided into discrete classes. Thus, it may be more suitable to the coming era where SN numbers will quickly expand from a few thousands to millions of events.Comment: Extended final draft of a chapter in the "SN Handbook". Comments most welcom

    Search for non-relativistic Magnetic Monopoles with IceCube

    Get PDF
    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1km31\,\mathrm{km}^3 of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 1027cm210^{-27}\,\mathrm{cm^2} to 1021cm210^{-21}\,\mathrm{cm^2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 1022(1024)cm210^{-22}\,(10^{-24})\,\mathrm{cm^2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ901018(1017)cm2s1sr1\Phi_{90} \le 10^{-18}\,(10^{-17})\,\mathrm{cm^{-2}s^{-1}sr^{-1}} at a 90% confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections.Comment: 20 pages, 20 figure

    Determining neutrino oscillation parameters from atmospheric muon neutrino disappearance with three years of IceCube DeepCore data

    Get PDF
    We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected. The detector volume surrounding DeepCore is used as a veto region to suppress the atmospheric muon background. Neutrino events are selected where the detected Cherenkov photons of the secondary particles minimally scatter, and the neutrino energy and arrival direction are reconstructed. Both variables are used to obtain the neutrino oscillation parameters from the data, with the best fit given by Δm322=2.720.20+0.19×103eV2\Delta m^2_{32}=2.72^{+0.19}_{-0.20}\times 10^{-3}\,\mathrm{eV}^2 and sin2θ23=0.530.12+0.09\sin^2\theta_{23} = 0.53^{+0.09}_{-0.12} (normal mass hierarchy assumed). The results are compatible and comparable in precision to those of dedicated oscillation experiments.Comment: 10 pages, 7 figure

    A combined maximum-likelihood analysis of the high-energy astrophysical neutrino flux measured with IceCube

    Get PDF
    Evidence for an extraterrestrial flux of high-energy neutrinos has now been found in multiple searches with the IceCube detector. The first solid evidence was provided by a search for neutrino events with deposited energies 30\gtrsim30 TeV and interaction vertices inside the instrumented volume. Recent analyses suggest that the extraterrestrial flux extends to lower energies and is also visible with throughgoing, νμ\nu_\mu-induced tracks from the Northern hemisphere. Here, we combine the results from six different IceCube searches for astrophysical neutrinos in a maximum-likelihood analysis. The combined event sample features high-statistics samples of shower-like and track-like events. The data are fit in up to three observables: energy, zenith angle and event topology. Assuming the astrophysical neutrino flux to be isotropic and to consist of equal flavors at Earth, the all-flavor spectrum with neutrino energies between 25 TeV and 2.8 PeV is well described by an unbroken power law with best-fit spectral index 2.50±0.09-2.50\pm0.09 and a flux at 100 TeV of (6.71.2+1.1)1018GeV1s1sr1cm2\left(6.7_{-1.2}^{+1.1}\right)\cdot10^{-18}\,\mathrm{GeV}^{-1}\mathrm{s}^{-1}\mathrm{sr}^{-1}\mathrm{cm}^{-2}. Under the same assumptions, an unbroken power law with index 2-2 is disfavored with a significance of 3.8 σ\sigma (p=0.0066%p=0.0066\%) with respect to the best fit. This significance is reduced to 2.1 σ\sigma (p=1.7%p=1.7\%) if instead we compare the best fit to a spectrum with index 2-2 that has an exponential cut-off at high energies. Allowing the electron neutrino flux to deviate from the other two flavors, we find a νe\nu_e fraction of 0.18±0.110.18\pm0.11 at Earth. The sole production of electron neutrinos, which would be characteristic of neutron-decay dominated sources, is rejected with a significance of 3.6 σ\sigma (p=0.014%p=0.014\%).Comment: 16 pages, 10 figures; accepted for publication in The Astrophysical Journal; updated one referenc

    The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part II: Atmospheric and Astrophysical Diffuse Neutrino Searches of All Flavors

    Full text link
    Papers on atmospheric and astrophysical diffuse neutrino searches of all flavors submitted to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague) by the IceCube Collaboration.Comment: 66 pages, 36 figures, Papers submitted to the 34th International Cosmic Ray Conference, The Hague 2015, v2 has a corrected author lis

    Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

    Get PDF
    A diffuse flux of astrophysical neutrinos above 100TeV100\,\mathrm{TeV} has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to 35TeV35\,\mathrm{TeV} and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the (fe:fμ:fτ)(1:1:1)(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sources. Limits are placed on non-standard flavor compositions that cannot be produced by averaged neutrino oscillations but could arise in exotic physics scenarios. A maximally track-like composition of (0:1:0)(0:1:0)_\oplus is excluded at 3.3σ3.3\sigma, and a purely shower-like composition of (1:0:0)(1:0:0)_\oplus is excluded at 2.3σ2.3\sigma.Comment: 8 pages, 3 figures. Submitted to PR

    Search for Prompt Neutrino Emission from Gamma-Ray Bursts with IceCube

    Get PDF
    We present constraints derived from a search of four years of IceCube data for a prompt neutrino flux from gamma-ray bursts (GRBs). A single low-significance neutrino, compatible with the atmospheric neutrino background, was found in coincidence with one of the 506 observed bursts. Although GRBs have been proposed as candidate sources for ultra-high energy cosmic rays, our limits on the neutrino flux disfavor much of the parameter space for the latest models. We also find that no more than 1%\sim1\% of the recently observed astrophysical neutrino flux consists of prompt emission from GRBs that are potentially observable by existing satellites.Comment: 15 pages, 3 figure
    corecore