1,625 research outputs found

    Differential Interactions of Lipopolysaccharides with Lipid Bilayers: Applications for Pathogen Detection

    Get PDF
    This dissertation describes the development of new tailored methods for the discriminative detection of amphiphilic lipopolysaccharide (LPS) antigens, so as to improve screening methodologies for food-safety applications, and detection of amphiphiles in general. LPS is associated with the outer membrane of Gram-negative bacteria, and is a primary virulence biomarker of several pathogens. Direct detection of amphiphilic LPS in the aqueous matrices of the host/sample requires an appreciation of the complex biochemistry of the molecule, and forms the basis for this research. The unique structure of this molecule can be used for identification of both the serogroup and strain of pathogen. However, current detection methods lack sensitivity, and are also not serogroup specific. To achieve discriminative detection, we have first created a unique repertoire of associated reagents by isolating amphiphilic LPS from seven strains of Shiga toxin-producing Escherichia coli, and developing highly specific monoclonal antibodies against the O antigen regions of the same. We demonstrate the use of a targeted detection technique, called membrane insertion, which facilitates the physiological presentation of LPS by inserting the hydrophobic lipid A portion of the molecule into a lipid bilayer, leaving the O antigen exposed. This method is advantageous because it minimizes exposure of the highly conserved lipid A epitopes, and maximizes exposure of the serogroup specific O antigens. In addition, we present the first comprehensive biophysical analysis of the interaction of LPS with supported lipid bilayer architectures, and identify several novel and interesting effects of the same. Further characterization of these effects reveals the role or impact of membrane proteins and complexity on the interactions between host and pathogen biomarkers and significantly questions the design and execution of cell studies and in vitro platforms for amphiphilic targets like LPS. Cell studies clearly reveal that presentation of LPS either in buffer or in serum dramatically alters associated cytokine profiles. Our conclusions indicate that the biochemistry of amphiphilic molecules, like LPS, and their presentation, should always be considered when interfacing with physiological systems

    Small Employer Perspectives On The Affordable Care Act's Premiums, SHOP Exchanges, And Self-Insurance

    Get PDF
    Beginning January 1, 2014, small businesses having no more than fifty full-time-equivalent workers will be able to obtain healthinsurance for their employees through Small Business Health OptionsProgram (SHOP) exchanges in every state. Although the Affordable Care Act intended the exchanges to make the purchasing of insurance moreattractive and affordable to small businesses, it is not yet known how they will respond to the exchanges. Based on a telephone survey of 604 randomly selected private firms having 3 -- 50 employees, we found that both firms that offered health coverage and those that did not rated most features of SHOP exchanges highly but were also very price sensitive.More than 92 percent of nonoffering small firms said that if they were to offer coverage, it would be "very" or "somewhat" important to them that premium costs be less than they are today. Eighty percent of offering firms use brokers who commonly perform functions of benefit managers -- functions that the SHOP exchanges may assume. Twenty-six percent of firms using brokers reported discussing self-insuring with their brokers. An increase in the number of self-insured small employers could pose a threat to SHOP exchanges and other small-group insurance reforms

    Detection Methods for Lipopolysaccharides: Past and Present

    Get PDF
    Lipopolysaccharide (LPS) is the primary component of the outer membrane of Gram‐negativebacteria. LPS aids in protecting bacterial cells, and also defines the unique serogroups used to classify bacteria. Additionally, LPS is an endotoxin and the primary stimulator of innate immune cells in mammals, making it an ideal candidate for early detection of pathogens. However, the majority of methods for detection of LPS focus on detection of the endotoxic component of the molecule, lipid A. Since lipid A is largely conserved among bacterial species and serogroups, these detection approaches are highly nonspecific. Thus, the importance of identifying the O‐polysaccharide antigenic portion of LPS, which confers serogroup specificity, has received a great deal of attention in recent years. However, methods that are highly selective to the O‐antigens are typically less sensitive than those that target the endotoxin. Here we present a history and comparison of the sensitivity of these methods and their value for detecting bacteria in a variety of different sample types

    Forehead Skin Blood Flow in Normal Neonates during Active and Quiet Sleep, Measured with a Diode Laser Doppler Instrument

    Get PDF
    Changes in forehead skin blood flow during active and quiet sleep were determined in 16 healthy neonates using a recently developed semi-conductor laser Doppler flow meter without light conducting fibres. Measurements were carried out at a postnatal age varying from 5 hours to 7 days. The two sleep states could be distinguished in 17 recordings. The mean skin blood flow values during active sleep were significantly higher (p<0.01) than those during quiet sleep, the mean increase being 28.1%. The variability of the flow signal, expressed as the coefficient of variation, changed significantly from 23.1% during active sleep to 18.2% during quiet sleep

    Anti-Argonaute RIP-Chip Shows that miRNA Transfections Alter Global Patterns of mRNA Recruitment to Microribonucleoprotein Complexes

    Get PDF
    MicroRNAs (miRNAs) play key roles in gene expression regulation by guiding Argonaute (AGO)-containing microribonucleoprotein (miRNP) effector complexes to target polynucleotides. There are still uncertainties about how miRNAs interact with mRNAs. Here we employed a biochemical approach to isolate AGO-containing miRNPs from human H4 tumor cells by co-immunoprecipitation (co-IP) with a previously described anti-AGO antibody. Co-immunoprecipitated (co-IPed) RNAs were subjected to downstream Affymetrix Human Gene 1.0 ST microarray analysis. During rigorous validation, the RIP-Chip assay identified target mRNAs specifically associated with AGO complexes. RIP-Chip was performed after transfecting brain-enriched miRNAs (miR-107, miR-124, miR-128, and miR-320) and nonphysiologic control miRNA to identify miRNA targets. As expected, the miRNA transfections altered the mRNA content of the miRNPs. Specific mRNA species recruited to miRNPs after miRNA transfections were moderately in agreement with computational target predictions. In addition to recruiting mRNA targets into miRNPs, miR-107 and to a lesser extent miR-128, but not miR-124 or miR-320, caused apparent exclusion of some mRNAs that are normally associated with miRNPs. MiR-107 and miR-128 transfections also result in decreased AGO mRNA and protein levels. However, AGO mRNAs were not recruited to miRNPs after either miR-107 or miR-128 transfection, confirming that miRNAs may alter gene expression without stable association between particular mRNAs and miRNPs. In summary, RIP-Chip assays constitute an optimized, validated, direct, and high-throughput biochemical assay that provides data about specific miRNA:mRNA interactions, as well as global patterns of regulation by miRNAs

    Resistance to Gray Leaf Spot of Maize: Genetic Architecture and Mechanisms Elucidated through Nested Association Mapping and Near-Isogenic Line Analysis

    Get PDF
    Citation: Benson, J. M., Poland, J. A., Benson, B. M., Stromberg, E. L., & Nelson, R. J. (2015). Resistance to Gray Leaf Spot of Maize: Genetic Architecture and Mechanisms Elucidated through Nested Association Mapping and Near-Isogenic Line Analysis. Plos Genetics, 11(3), 23. https://doi.org/10.1371/journal.pgen.1005045Gray leaf spot (GLS), caused by Cercospora zeae-maydis and Cercospora zeina, is one of the most important diseases of maize worldwide. The pathogen has a necrotrophic lifestyle and no major genes are known for GLS. Quantitative resistance, although poorly understood, is important for GLS management. We used genetic mapping to refine understanding of the genetic architecture of GLS resistance and to develop hypotheses regarding the mechanisms underlying quantitative disease resistance (QDR) loci. Nested association mapping (NAM) was used to identify 16 quantitative trait loci (QTL) for QDR to GLS, including seven novel QTL, each of which demonstrated allelic series with significant effects above and below the magnitude of the B73 reference allele. Alleles at three QTL, qGLS1.04, qGLS2.09, and qGLS4.05, conferred disease reductions of greater than 10%. Interactions between loci were detected for three pairs of loci, including an interaction between iqGLS4.05 and qGLS7.03. Near-isogenic lines (NILs) were developed to confirm and fine-map three of the 16 QTL, and to develop hypotheses regarding mechanisms of resistance. qGLS1.04 was fine-mapped from an interval of 27.0 Mb to two intervals of 6.5 Mb and 5.2 Mb, consistent with the hypothesis that multiple genes underlie highly significant QTL identified by NAM. qGLS2.09, which was also associated with maturity (days to anthesis) and with resistance to southern leaf blight, was narrowed to a 4-Mb interval. The distance between major leaf veins was strongly associated with resistance to GLS at qGLS4.05. NILs for qGLS1.04 were treated with the C. zeae-maydis toxin cercosporin to test the role of host-specific toxin in QDR. Cercosporin exposure increased expression of a putative flavin-monooxygenase (FMO) gene, a candidate detoxification-related gene underlying qGLS1.04. This integrated approach to confirming QTL and characterizing the potential underlying mechanisms advances the understanding of QDR and will facilitate the development of resistant varieties

    Site Conditions Determine a Key Native Plant’s Contribution to Invasion Resistance in Grasslands

    Get PDF
    Many plant invasion studies in grasslands suggest that resident plants that share functional traits with invaders can reduce invasion by competing for limiting resources. However, since invasion studies often occur in highly controlled plots or microcosms, it is unclear how heterogeneous site conditions alter competitive interactions under realistic scenarios. To explore how landscape heterogeneity affects biotic resistance provided by competitive resident plants, we conducted a field‐based experiment across four sites in California grasslands. Plots contained naturally occurring populations of native Hemizonia congesta, but differed in other characteristics, including litter cover, annual grass cover, soil moisture, and species richness. We invaded plots with the functionally similar nonnative Centaurea solstitalis (yellow starthistle) and, at one site, supplemented one‐half of the established plots with water to test the effects of increasing a limiting resource. As in simplified plots and microcosms, increasing H. congesta abundance reduced starthistle biomass by competing for limited soil moisture, but only in plots with high starthistle germination. We conclude that higher abundances of native H. congesta can reduce starthistle invasion in heterogeneous grasslands, but competition is also affected by both abiotic (soil moisture) and biotic (starthistle germination number) conditions that vary across sites

    Haemorrhagic Colitis Associated with Enterohaemorrhagic \u3ci\u3eEscherichia coli\u3c/i\u3e O165:H25 Infection in a Yearling Feedlot Heifer

    Get PDF
    Introduction: Enterohaemorrhagic Escherichia coli (EHEC) cause haemorrhagic colitis and haemolytic uraemic syndrome in humans. Although EHEC infection typically results in haemorrhagic colitis in all ages of human patients, in cattle it is usually limited to 1- to 5-week-old nursing calves. Case Presentation: A 1-year-old feedlot beef heifer was moribund with neurological signs and bloody diarrhoea. At necropsy, the colonic mucosa contained multiple grossly visible haemorrhagic erosions, each measuring \u3c1 mm in diameter. Histologically, foci corresponding to the gross erosions had E. coli O165 antigen-positive bacterial rods adherent to the apical surfaces of degenerate and necrotic colonic mucosal epithelial cells in association with attaching and effacing lesions, and also within cytoplasmic vacuoles in some of these cells. An E. coli O165:H25 strain was isolated from the colonic mucosal tissue, and by microarray analysis was found to contain virulence genes corresponding to type III secretion system (T3SS) structure and regulation (cesD, cesT, escD, escF, escN/escV, escR, escT, ler, sepL, sepQ), T3SS effectors (espA, espB, espC, espD, espD, espF, espH, espJ, nleB, nleC, nleD, nleH, tir), serine proteases (eatA, espC, espP), Shiga toxin (stx2), EHEC-haemolysin (ehxA), and adhesins [intimin-Δ (eae-Δ), type 1 fimbria (fimA, fimB, fimH), type IV pili (pilA, pilB, pilC, pilM, pilP, pilQ) and non-fimbrial adhesin (efa1/lifA)]. Conclusion: To the best of our knowledge, this is the first report of disease in cattle associated with EHEC O165:H25 infection, the oldest bovine EHEC disease case with isolation of the pathogen and the first bovine case to demonstrate grossly evident, haemorrhagic, colonic mucosal erosions associated with EHEC infection

    Haemorrhagic Colitis Associated with Enterohaemorrhagic \u3ci\u3eEscherichia coli\u3c/i\u3e O165:H25 Infection in a Yearling Feedlot Heifer

    Get PDF
    Introduction: Enterohaemorrhagic Escherichia coli (EHEC) cause haemorrhagic colitis and haemolytic uraemic syndrome in humans. Although EHEC infection typically results in haemorrhagic colitis in all ages of human patients, in cattle it is usually limited to 1- to 5-week-old nursing calves. Case Presentation: A 1-year-old feedlot beef heifer was moribund with neurological signs and bloody diarrhoea. At necropsy, the colonic mucosa contained multiple grossly visible haemorrhagic erosions, each measuring \u3c1 mm in diameter. Histologically, foci corresponding to the gross erosions had E. coli O165 antigen-positive bacterial rods adherent to the apical surfaces of degenerate and necrotic colonic mucosal epithelial cells in association with attaching and effacing lesions, and also within cytoplasmic vacuoles in some of these cells. An E. coli O165:H25 strain was isolated from the colonic mucosal tissue, and by microarray analysis was found to contain virulence genes corresponding to type III secretion system (T3SS) structure and regulation (cesD, cesT, escD, escF, escN/escV, escR, escT, ler, sepL, sepQ), T3SS effectors (espA, espB, espC, espD, espD, espF, espH, espJ, nleB, nleC, nleD, nleH, tir), serine proteases (eatA, espC, espP), Shiga toxin (stx2), EHEC-haemolysin (ehxA), and adhesins [intimin-Δ (eae-Δ), type 1 fimbria (fimA, fimB, fimH), type IV pili (pilA, pilB, pilC, pilM, pilP, pilQ) and non-fimbrial adhesin (efa1/lifA)]. Conclusion: To the best of our knowledge, this is the first report of disease in cattle associated with EHEC O165:H25 infection, the oldest bovine EHEC disease case with isolation of the pathogen and the first bovine case to demonstrate grossly evident, haemorrhagic, colonic mucosal erosions associated with EHEC infection

    Focus on RNA Isolation: Obtaining RNA for MicroRNA (miRNA) Expression Profiling Analyses of Neural Tissue

    Get PDF
    MicroRNAs (miRNAs) are present in all known plant and animal tissues and appear to be somewhat concentrated in the mammalian nervous system. Many different miRNA expression profiling platforms have been described. However, relatively little research has been published to establish the importance of \u27upstream\u27 variables in RNA isolation for neural miRNA expression profiling. We tested whether apparent changes in miRNA expression profiles may be associated with tissue processing, RNA isolation techniques, or different cell types in the sample. RNA isolation was performed on a single brain sample using eight different RNA isolation methods, and results were correlated using a conventional miRNA microarray and then cross-referenced to Northern blots. Differing results were seen between samples obtained using different RNA isolation techniques and between microarray and Northern blot results. Another complication of miRNA microarrays is tissue-level heterogeneity of cellular composition. To investigate this phenomenon, miRNA expression profiles were determined and compared between highly-purified primary cerebral cortical cell preparations of rat primary E15-E18 neurons versus rat primary E15-E18 astrocytes. Finally, to assess the importance of dissecting human brain gray matter from subjacent white matter in cerebral cortical studies, miRNA expression profiles were compared between gray matter and immediately contiguous white matter. The results suggest that for microarray studies, cellular composition is important, and dissecting white matter from gray matter improves the specificity of the results. Based on these data, recommendations for miRNA expression profiling in neural tissues, and considerations worthy of further study, are discussed
    • 

    corecore