11,956 research outputs found

    Fluoride solid lubricants for extreme temperatures and corrosive environments

    Get PDF
    Fluoride solid lubricants for extreme temperature and corrosive environment

    Oscillation Effects On Neutrinos From The Early Phase Of a Nearby Supernova

    Get PDF
    Neutrinos emitted during stellar core collapse leading to a supernova are primarily of the electron neutrino type at source which may undergo oscillation between flavor eigenstates during propagation to an earth-bound detector. Although the number of neutrinos emitted during the pre-bounce collapse phase is much smaller than that emitted in the post-bounce phase (in which all flavors of neutrinos are emitted), a nearby supernova event may nevertheless register a substantial number of detections from the pre-bounce phase at SuperKamiokande (SK) and the Sudbury Neutrino Observatory (SNO). The calorimetric measurement of the supernova neutrino fluence from this stage via the charge current and neutral current detection channels in SNO and the corresponding distortion of detected spectrum in SK over the no-oscillation spectrum, can probe information about neutrino mass difference and mixing which are illustrated here in terms of two- and three-flavor oscillation models

    Self-Generated Magnetic Fields in Galactic Cooling Flows

    Get PDF
    Interstellar magnetic fields in elliptical galaxies are assumed to have their origin in stellar fields that accompany normal mass loss from an evolving population of old stars. The seed fields are amplified by interstellar turbulence driven by stellar mass loss and supernova events. These disordered fields are further amplified by time-dependent compression in the inward moving galactic cooling flow and are expected to dominate near the galactic core. Under favorable circumstances, fields similar in strength to those observed B110 (r/10 kpc)1.2μB \sim 1-10~(r/10~kpc)^{-1.2}\muG can be generated solely from these natural galactic processes. In general the interstellar field throughout elliptical galaxies is determined by the outermost regions in the interstellar gas where the turbulent dynamo process can occur. Because of the long hydrodynamic flow times in galactic cooling flows, currently observed magnetic fields may result from periods of intense turbulent field amplification that occurred in the outer galaxy in the distant past. Particularly strong fields in ellipticals may result from ancient galactic mergers or shear turbulence introduced at the boundary between the interstellar gas and ambient cluster gas.Comment: 21 pages in AASTEX LaTeX with 2 figures; accepted by Astrophysical Journa

    GRB 030329: 3 years of radio afterglow monitoring

    Full text link
    Radio observations of gamma-ray burst (GRB) afterglows are essential for our understanding of the physics of relativistic blast waves, as they enable us to follow the evolution of GRB explosions much longer than the afterglows in any other wave band. We have performed a three-year monitoring campaign of GRB 030329 with the Westerbork Synthesis Radio Telescopes (WSRT) and the Giant Metrewave Radio Telescope (GMRT). Our observations, combined with observations at other wavelengths, have allowed us to determine the GRB blast wave physical parameters, such as the total burst energy and the ambient medium density, as well as investigate the jet nature of the relativistic outflow. Further, by modeling the late-time radio light curve of GRB 030329, we predict that the Low-Frequency Array (LOFAR, 30-240 MHz) will be able to observe afterglows of similar GRBs, and constrain the physics of the blast wave during its non-relativistic phase.Comment: 5 pages, 2 figures, Phil. Trans. R. Soc. A, vol.365, p.1241, proceedings of the Royal Society Scientific Discussion Meeting, London, September 200

    A dust disk surrounding the young A star HR4796A

    Get PDF
    We report the codiscovery of the spatially-resolved dust disk of the Vega-like star HR 4796A. Images of the thermal dust emission at λ=18μ\lambda = 18 \mum show an elongated structure approximately 200 AU in diameter surrounding the central A0V star. The position angle of the disk, 30±1030^{\circ} \pm 10^{\circ}, is consistent to the position angle of the M companion star, 225225^{\circ}, suggesting that the disk-binary system is being seen nearly along its orbital plane. The surface brightness distribution of the disk is consistent with the presence of an inner disk hole of approximately 50 AU radius, as was originally suggested by Jura et al. on the basis of the infrared spectrum. HR 4796 is a unique system among the Vega-like or β\beta Pictoris stars in that the M star companion (a weak-emission T Tauri star) shows that the system is relatively young, 8±3\sim 8 \pm 3 Myr. The inner disk hole may provide evidence for coagulation of dust into larger bodies on a timescale similar to that suggested for planet formation in the solar system.Comment: 12 pages, 3 PostScript figures, accepted for publication in Astrophysical Journal Letter

    No Fossil Disk in the T Tauri Multiple System V773 Tau

    Full text link
    We present new multi-epoch near-infrared and optical high-angular images of the V773 Tau pre-main sequence triple system, a weak-line T Tauri (WTTS) system in which the presence of an evolved, ``fossil'' protoplanetary disk has been inferred on the basis of a significant infrared excess. Our images reveal a fourth object bound to the system, V773 Tau D. While it is much fainter than all other components at 2 micron, it is the brightest source in the system at 4.7 micron. We also present medium-resolution K band adaptive optics spectroscopy of this object, which is featureless with the exception of a weak Br gamma emission line. Based on this spectrum and on the spectral energy distribution of the system, we show that V773 Tau D is another member of the small class of ``infrared companions'' (IRCs) to T Tauri stars. It is the least luminous, and probably the least massive, component of the system, as opposed to most other IRCs, which suggests that numerous low-luminosity IRCs such as V773 Tau D may still remain to be discovered. Furthermore, it is the source of the strong IR excess in the system. We therefore reject the interpretation of this excess as the signature of a fossil (or ``passive'') disk and further suggest that these systems may be much less frequent than previously thought. We further show that V773 Tau C is a variable classical T Tauri star (CTTS) and that its motion provides a well constrained orbital model. We show that V773 Tau D can be dynamically stable within this quadruple system if its orbit is highly inclined. Finally, V773 Tau is the first multiple system to display such a variety of evolutionary states (WTTS, CTTS, IRC), which may be the consequence of the strong star-star interactions in this compact quadruple system.Comment: Accepted for publication in Astrophysical Journal, 29 pages, 2 tables, 5 figure

    Smc5/6: a link between DNA repair and unidirectional replication?

    Get PDF
    Of the three structural maintenance of chromosome (SMC) complexes, two directly regulate chromosome dynamics. The third, Smc5/6, functions mainly in homologous recombination and in completing DNA replication. The literature suggests that Smc5/6 coordinates DNA repair, in part through post-translational modification of uncharacterized target proteins that can dictate their subcellular localization, and that Smc5/6 also functions to establish DNA-damage-dependent cohesion. A nucleolar-specific Smc5/6 function has been proposed because Smc5/6 yeast mutants display penetrant phenotypes of ribosomal DNA (rDNA) instability. rDNA repeats are replicated unidirectionally. Here, we propose that unidirectional replication, combined with global Smc5/6 functions, can explain the apparent rDNA specificity

    Effects Of Plyometric and Endurance Training on Aerobic and Anaerobic Power.

    Get PDF
    Snyder, T., Shaw, E., Mueller, A., Stoeckel, E., Strom, A., VanDerVeeken, T., Swensen, T., Exercise and Sport Sciences, Ithaca College, Ithaca NY Purpose and Methods: Extending the work of Burgomaster and Gibala, we compared the effects of four weeks of plyometric and endurance training on various indices of aerobic and anaerobic performance in 29 active college age males and females (19.4 ± 1.8 years and 69.9 ± 13.8 kg), who were assigned to a plyometric (6 males and 9 females) or endurance training group (6 males and 8 females). Endurance training consisted of 30 min of cycling at a heart rate corresponding to 75% of VO2 max; plyometric training consisted of various jumps and lunges, yielding 120 foot to ground touches. Both groups trained 30 min.d-1, 3 d.wk-1 for four weeks; workouts were preceded and followed by a warm-up and cool down. Cycle VO2 max, 2-mile cycling time trial (TT) performance, and Wingate 30 s peak (PPO) and mean power output (MPO) were assessed before and after training. Data were compared with a repeated measures ANOVA. Results: Mean (SD) for dependent variables and % change are shown. * indicates significant changes across time. There were no differences between groups before and after training for any variable. Even though the magnitude of change for each variable was larger with cycle training, plyometric training did improve VO2 max by 7.1%, and PPO and MPO by 11 and 12%, respectively. Further, the 3.4% change in TT performance following plyometric training was nearly significant (p=0.063). Conclusion: Plyometric training is an effective means by which to enhance indices of aerobic and anaerobic fitness. This project was funded by Ithaca College

    Development of Readout Interconnections for the Si-W Calorimeter of SiD

    Full text link
    The SiD collaboration is developing a Si-W sampling electromagnetic calorimeter, with anticipated application for the International Linear Collider. Assembling the modules for such a detector will involve special bonding technologies for the interconnections, especially for attaching a silicon detector wafer to a flex cable readout bus. We review the interconnect technologies involved, including oxidation removal processes, pad surface preparation, solder ball selection and placement, and bond quality assurance. Our results show that solder ball bonding is a promising technique for the Si-W ECAL, and unresolved issues are being addressed.Comment: 8 pages + title, 6 figure
    corecore