67 research outputs found

    Clinical Manifestations and Case Management of Ebola Haemorrhagic Fever caused by a newly identified virus strain, Bundibugyo, Uganda, 2007-2008

    Get PDF
    A confirmed Ebola haemorrhagic fever (EHF) outbreak in Bundibugyo, Uganda, November 2007-February 2008, was caused by a putative new species (Bundibugyo ebolavirus). It included 93 putative cases, 56 laboratory-confirmed cases, and 37 deaths (CFR = 25%). Study objectives are to describe clinical manifestations and case management for 26 hospitalised laboratory-confirmed EHF patients. Clinical findings are congruous with previously reported EHF infections. The most frequently experienced symptoms were non-bloody diarrhoea (81%), severe headache (81%), and asthenia (77%). Seven patients reported or were observed with haemorrhagic symptoms, six of whom died. Ebola care remains difficult due to the resource-poor setting of outbreaks and the infection-control procedures required. However, quality data collection is essential to evaluate case definitions and therapeutic interventions, and needs improvement in future epidemics. Organizations usually involved in EHF case management have a particular responsibility in this respect

    Forward K+ production in subthreshold pA collisions at 1.0 GeV

    Get PDF
    K+ meson production in pA (A = C, Cu, Au) collisions has been studied using the ANKE spectrometer at an internal target position of the COSY-Juelich accelerator. The complete momentum spectrum of kaons emitted at forward angles, theta < 12 degrees, has been measured for a beam energy of T(p)=1.0 GeV, far below the free NN threshold of 1.58 GeV. The spectrum does not follow a thermal distribution at low kaon momenta and the larger momenta reflect a high degree of collectivity in the target nucleus.Comment: 4 pages, 3 figure

    Phosphoinositide-3 Kinase-Akt Pathway Controls Cellular Entry of Ebola Virus

    Get PDF
    The phosphoinositide-3 kinase (PI3K) pathway regulates diverse cellular activities related to cell growth, migration, survival, and vesicular trafficking. It is known that Ebola virus requires endocytosis to establish an infection. However, the cellular signals that mediate this uptake were unknown for Ebola virus as well as many other viruses. Here, the involvement of PI3K in Ebola virus entry was studied. A novel and critical role of the PI3K signaling pathway was demonstrated in cell entry of Zaire Ebola virus (ZEBOV). Inhibitors of PI3K and Akt significantly reduced infection by ZEBOV at an early step during the replication cycle. Furthermore, phosphorylation of Akt-1 was induced shortly after exposure of cells to radiation-inactivated ZEBOV, indicating that the virus actively induces the PI3K pathway and that replication was not required for this induction. Subsequent use of pseudotyped Ebola virus and/or Ebola virus-like particles, in a novel virus entry assay, provided evidence that activity of PI3K/Akt is required at the virus entry step. Class 1A PI3Ks appear to play a predominant role in regulating ZEBOV entry, and Rac1 is a key downstream effector in this regulatory cascade. Confocal imaging of fluorescently labeled ZEBOV indicated that inhibition of PI3K, Akt, or Rac1 disrupted normal uptake of virus particles into cells and resulted in aberrant accumulation of virus into a cytosolic compartment that was non-permissive for membrane fusion. We conclude that PI3K-mediated signaling plays an important role in regulating vesicular trafficking of ZEBOV necessary for cell entry. Disruption of this signaling leads to inappropriate trafficking within the cell and a block in steps leading to membrane fusion. These findings extend our current understanding of Ebola virus entry mechanism and may help in devising useful new strategies for treatment of Ebola virus infection

    Tacaribe Virus but Not Junin Virus Infection Induces Cytokine Release from Primary Human Monocytes and Macrophages

    Get PDF
    The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-β and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation

    Mucosal Immunization of Cynomolgus Macaques with the VSVΔG/ZEBOVGP Vaccine Stimulates Strong Ebola GP-Specific Immune Responses

    Get PDF
    (ZEBOV) produces a lethal viral hemorrhagic fever in humans and non-human primates.We demonstrate that the VSVΔG/ZEBOVGP vaccine given 28 days pre-challenge either intranasally (IN), orally (OR), or intramuscularly (IM) protects non-human primates against a lethal systemic challenge of ZEBOV, and induces cellular and humoral immune responses. We demonstrated that ZEBOVGP-specific T-cell and humoral responses induced in the IN and OR groups, following an immunization and challenge, produced the most IFN-γ and IL-2 secreting cells, and long term memory responses.We have shown conclusively that mucosal immunization can protect from systemic ZEBOV challenge and that mucosal delivery, particularly IN immunization, seems to be more potent than IM injection in the immune parameters we have tested. Mucosal immunization would be a huge benefit in any emergency mass vaccination campaign during a natural outbreak, or following intentional release, or for mucosal immunization of great apes in the wild

    The acceptor availability at photosystem I and ABA control nuclear expression of 2-cys peroxiredoxin-alpha in Arabidopsis thaliana

    No full text
    Baier M, Stroher E, Dietz K-J. The acceptor availability at photosystem I and ABA control nuclear expression of 2-cys peroxiredoxin-alpha in Arabidopsis thaliana. PLANT AND CELL PHYSIOLOGY. 2004;45(8):997-1006.The redox-regulated 2-Cys peroxiredoxin-A (2CPA) promoter, which drives expression of a dominant chloroplast antioxidant enzyme, responds to signals originating from the photosynthetic electron transport downstream of PSI. Modulation of CO2- and NO3--reduction rates in reporter gene plants expressing glucuronidase under control of the Arabidopsis thaliana 2CPA promoter revealed that promoter activity correlates with the availability of electron acceptors at PSI. The photosynthetic redox-regulation can be simulated by oxidant and antioxidant treatments. Inhibitor studies with PD98059 and staurosporine showed that a mitogen-activated protein kinase kinase transmits the oxidative response, while the antioxidant signal is transmitted by a serine/threonine kinase. Analysis of 2CPA promoter regulation in the abscisic acid (ABA)-biosynthetic mutants aba2 and aba3 and the ABA-insensitive mutants abi1 and abi2 support a regulatory circuitry in which the redox signal cross-talks with the ABA-signaling cascade downstream of ABI1 and ABI2

    Redox signal integration: from stimulus to networks and genes

    No full text
    Dietz K-J. Redox signal integration: from stimulus to networks and genes. PHYSIOLOGIA PLANTARUM. 2008;133(3):459-468.Recent research has established redox-dependent thiol modification of proteins as a major regulatory layer superimposed on most cell functional categories in plants. Modern proteomics and forward as well as reverse genetics approaches have enabled the identification of a high number of novel targets of redox regulation. Redox-controlled processes range from metabolism to transport, transcription and translation. Gene activity regulation by transcription factors such as TGA, Athb-9 and RAP2 directly or indirectly is controlled by the redox state. Knowledge on putative redox sensors such as the peroxiredoxins, on redox transmitters including thioredoxins and glutaredoxins and biochemical mechanisms of their linkage to the metabolic redox environment has emerged as the framework of a functional redox regulatory network. Its basic principle is similar in eukaryotic cells and particularly complex in the photosynthesizing chloroplast. Methods and knowledge are now at hand to develop a quantitative understanding of redox signalling and the redox regulatory network in the eukaryotic cell
    corecore